

CFATA Y FESC, UNAM

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

Carrera: Licenciatura en Tecnología

Programa de la Asignatura:

SISTEMAS EMBEBIDOS

Clave: No. de créditos: 12 Semestre: 6°, 7° u 8°

DURACIÓN DEL CURSO:

Semanas: 16

Horas a la semana: 8 (Teoría: 4, Prácticas: 4)

Horas totales al semestre: 128 (Teoría: 64, Prácticas: 64)

Carácter de la asignatura: Optativo. Modalidad: Curso.

Tipo de asignatura: Teórico-práctico.

Tronco de desarrollo: Terminal.

Área de conocimiento: Tecnología Industrial.

OBJETIVO.

Comprender los conceptos, las técnicas básicas y aplicaciones de los sistemas embebidos.

REQUISITOS.

El alumno debe tener conocimientos acerca del manejo y diseño de aplicaciones con microcontroladores.

Asignaturas antecedentes sugeridas:

Microcontroladores.

ALCANCE.

El alumno comprenderá el funcionamiento elemental de sistemas embebidos basados en microcontrolador, enfatizando aspectos referentes al software especializado que corre en estos.

Licenciatura en Tecnología

Asignaturas consecuentes sugeridas:

Ninguna.

Técnicas de enseñanza sugeridas:

Exposición oral (x)
Exposición audiovisual (x)
Ejercicios dentro de clase (x)
Ejercicios fuera del aula (x)
Lecturas obligatorias (x)

Técnicas de evaluación sugeridas:

Exámenes parciales(x)Examen final(x)Trabajos y tareas fuera del aula(x)Prácticas de Laboratorio(x)Participación en clase(x)

Perfil profesiográfico de quienes pueden impartir la asignatura:

Profesor con experiencia práctica, tanto docente como en la industria, en el diseño y operación de sistemas embebidos y sistemas operativos en tiempo real. Deseable que cuente con un posgrado en el área.

Temas:	# horas
1. Introducción	4
2. Programación de microcontroladores en lenguaje C	20
3. El Kernel en tiempo real	14
4. Redes embebidas	12
5. TCP/IP para sistemas embebidos	14
	64
Prácticas de laboratorio	64
Total	128

REFERENCIAS:

Bibliografía básica:

TOOD D. Morton

Embedded Microcontrollers Prentice Hall, 2001.

HUANG. MC68HC12

An introduction Software and Hardware Interfacing Columbus, Ohio, Thomson, 2003.

Bibliografía complementaria:

VAN Sickle Ted

Programming Microcontrollers in C 2a. edición. High Text, 2000.

LAWRENZ, Can

System Engineering From theory to Practical Applications Wolfenbuettel, Germay. Springer, 1997.

CONTENIDO DETALLADO

I. Introducción:

Objetivo: Conocer las ideas en las que se sustentan los sistemas embebidos, así como sus aplicaciones.

Contenido:

- I.1. ¿Qué es un sistema embebido?
- I.2. Aplicaciones de los sistemas embebidos.

2. Programación de microcontroladores en lenguajes C

Objetivo: Aprender los fundamentos y diferencias de programar en C estándar y C para microcontroladores.

Contenido:

- 2.1 Programación modular y estructura de un programa en C.
 - 2.1.1 El código fuente en C.
 - 2.1.2 El proceso de construcción modular.
- 2.2 Tipos, operadores y expresiones.
 - 2.2.1 Tipos de datos
 - 2.2.2 Declaración de variables.
 - 2.2.3 Constantes
 - 2.2.4 Apuntadores
 - 2.2.5 Arreglos y cadenas
 - 2.2.6 Estructuras
 - 2.2.7 Tipos enumerados
 - 2.2.8 Operaciones de bit.
- 2.3 Estructuras de programas en C.
 - 2.3.1 Estructuras de control
 - 2.3.2 Funciones
 - 2.3.3 Módulos
 - 2.3.4 Arranque e inicialización

3. El Kernel en tiempo real

Objetivo: Dar a conocer la importancia de la programación en tiempo real dentro de los sistemas embebidos.

Contenido:

- 3.1 Introducción a la programación multitareas en tiempo real
 - 3.1.1 El lazo infinito

CFATA Y FESC, UNAM

- 3.2 El Kernel multitareas
 - 3.2.1 Kernel en tiempo real
 - 3.2.2 Tareas y conmutación de tareas
 - 3.2.3 Rutinas de servicio de interrupción
 - 3.2.4 Temporizadores
 - 3.2.5 Comunicación entre tareas
 - 3.2.6 Programando con un kernel comercial

4. Redes embebidas

Objetivo: Conocer los principios fundamentales de las redes de microcontroladores.

Contenido:

- 4.1 Breve descripción de los diferentes protocolos para las redes embebidas.
 - 4.1.1 Características básicas de un protocolo de comunicación.
- 4.2 Controlador de red de área (CAN)
 - 4.2.1 Descripción de las capas de un protocolo CAN
 - 4.2.2 Capacidad de detección de errores.
 - 4.2.3 Descripción de los formatos de los mensajes CAN
 - 4.2.4 Descripción del filtrado de mensajes
 - 4.2.5 Manipulación de errores en CAN
 - 4.2.6 Confinamiento de fallas en CAN
 - 4.2.7 Tiempo de bit en un mensaje CAN
 - 4.2.8 Métodos de sincronización CAN
 - 4.2.9 Estructura de mensajes en CAN
 - 4.2.10 Cálculo de los parámetros de tiempo requeridos para una aplicación.
 - 4.2.11 Programación de una aplicación usando CAN

5. TC/IP para sistemas embebidos.

Objetivo: Conocer los principios fundamentales para conectar un microcontrolador a internet.

- 5.1 Introducción
- 5.2 Depuración y direccionamiento en red
- 5.3 TCP/IP en sistemas embebidos
- 5.4 Servidor de red en un microcontrolador