

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

PROGRAMA DE LA ASIGNATURA DE:							
Operaciones Unitarias							
IDENTIFICACIÓN DE LA ASIGNATURA							
MODALIDAD: Curso							
TIPO DE ASIGNATURA: Teórica							
SEMESTRE EN QUE SE IMPARTE: Sexto							
CARÁCTER DE LA ASIGNATURA: Obligatoria							
NÚMERO DE CRÉDITOS: 8							
HORAS A LA SEMANA: 4 TEÓRICAS: 4	PRÁCTICAS: ()	SEMANAS DE CLASE: 16	TOTAL DE HORAS:	64			
SERIACIÓN: Si () No (X)	Obligatoria ()	Indicativa ()					
ASIGNATURA ANTECEDENTE: Ninguna							
ASIGNATURA SUBSECUENTE:	Ninguna						

OBJETIVOS GENERALES:

Al finalizar el curso, el alumno será capaz de aplicar los conocimientos adquiridos de transferencia de momento, calor y masa a procesos industriales en donde estén involucradas las operaciones unitarias.

ÍNDICE TEMÁTICO				
UNIDAD	TEMAS	HORAS TEÓRICAS	HORAS PRÁCTICAS	
1	Introducción a las Operaciones Unitarias	4	0	
2	Análisis Dimensional y Modelos	8	0	
3	Balances de Materia y Energía	12	0	
4	Introducción a los Fenómenos de Transporte	4	0	
5	Flujo de Fluidos	12	0	
6	Transferencia de Calor	12	0	
7	Transferencia de Masa	12	0	
	TOTAL DE HORAS TEÓRICAS	64	0	
	TOTAL DE HORAS PRÁCTICAS	0	0	
	TOTAL DE HORAS 64		64	

CONTENIDO TEMÁTICO

1. Introducción a las Operaciones Unitarias

- 1.1. Clasificación de las Operaciones Unitarias.
 - 1.1.1. Con base a la Transferencia de Momento.
 - 1.1.2. Con base a la Transferencia de Calor.
 - 1.1.3. Con base a la Transferencia de masa.

2. Análisis Dimensional y Modelos

- 2.1 Análisis dimensional.
 - 2.1.1. Teorema π o Principio de Buckingham.
 - 2.1.2. Determinación de parámetros adimensionales.
- 2.2. Modelos.
 - 2.2.1. Escalas y Similitud.

3. Balances de Materia y Energía

- 3.1. Balances de Materia.
 - 3.1.1. Ecuación General de Balance de Materia.
 - 3.1.2. Balance Global y Parciales.
 - 3.1.3. Balances de Materia en estado no estacionario sin reacción química.
 - 3.1.4. Balances de Materia en estado estacionario sin reacción química.
 - 3.1.5. Balances de Materia en estado estacionario con reacción química.
- 3.2. Balances de Energía.
 - 3.2.1. Ecuación General de Balance de Energía.
 - 3.2.2. Balances de Energía en estado no estacionario sin reacción química.
 - 3.2.3. Balances de Energía en estado estacionario sin reacción química.
 - 3.2.4. Balances de Energía en estado estacionario con reacción química.

4. Introducción a los Fenómenos de Transporte

- 4.1 Fenómenos de transporte.
 - 4.1.1. Mecanismos de los fenómenos de transporte.
 - 4.1.2. Transporte de cantidad de movimiento.
 - 4.1.3. Transporte de calor.
 - 4.1.4. Transporte de materia.

5. Flujo de Fluidos

- 5.1. Definición de fluido.
- 5.2. El fluido como medio continuo.
- 5.3. Clasificación de los fluidos.
 - 5.3.1. Fluidos Dependientes del tiempo.
 - 5.3.2. Fluidos Independientes del tiempo.

- 5.4. Estática de Fluidos.
 - 5.4.1. La presión y sus propiedades.
 - 5.4.2. Fuerzas sobre superficies.
 - 5.4.3. Fuerzas sobre cuerpos.
- 5.5. Análisis puntual del comportamiento dinámico de los fluidos.
 - 5.5.1. Ecuación de continuidad.
 - 5.5.2. Dinámica del fluido ideal.
 - 5.5.2.1. Ecuación de Euler.
 - 5.5.2.2. Ecuación de Bernoulli.
- 5.6. Flujo Viscoso.
 - 5.6.1. Número de Reynolds.
 - 5.6.2. Ecuaciones de Navier-Stokes.
 - 5.6.3. Flujo de Couette, flujo de Poiseville.
 - 5.6.4. Flujo Turbulento.
 - 5.6.5. Capa límite.
 - 5.6.6. Análisis dimensional en la transferencia de momento.

6. Transferencia de Calor

- 6.1. Mecanismos de transferencia de Calor.
- 6.2. Transferencia de calor por conducción en estado estacionario.
 - 6.2.1. Primera ley de Fourier.
 - 6.2.2. Flujo de calor unidimensional.
 - 6.2.3. Análisis dimensional en la transferencia de calor.
- 6.3. Transferencia de calor en estado no estacionario.
 - 6.3.1. Segunda Ley de Fourier.
 - 6.3.2. Flujo de calor unidimensional en estado no estacionario.

7. Transferencia de Masa

- 7.1. Mecanismos de la transferencia de masa.
- 7.2. Coeficientes de transferencia de masa.
- 7.3. Primera ley de Fick.
- 7.4. Transferencia de masa unidimensional.
- 7.5. Segunda ley de Fick.
- 7.6. Transferencia de masa bidimensional.
- 7.7. Transferencia de masa en la interfase.
- 7.8. Análisis dimensional de la transferencia de masa.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- Geankoplis, Christie J. (2001). Transport processes and unit operations (3^a edición). México: Ed. CECSA.
- McCabe and Warren L. (2001). Unit operations of chemical engineering.
 New York: McGraw-Hill.

BIBLIOGRAFÍA COMPLEMENTARIA

- Reklaitis, G.V. (1989). *Balances de materia y energía*. México: Ed. McGraw-Hill.
- Welty, James R. (2001). Fundamentals of momentum, heat, and mass transfer. New York: J. Wiley.

SITIOS WEB RECOMENDADOS

http://www.virtual.unal.edu.co/cursos/sedes/manizales/4090002/html/pages/cap1/c1 4.htm

SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDÁCTICAS	UTILIZACIÓN EN EL CURSO
Exposición oral	✓
Exposición audiovisual	✓
Actividades prácticas dentro de clase	√
Ejercicios fuera del aula	✓
Seminarios	✓
Lecturas obligatorias	√
Trabajo de investigación	✓
Prácticas de Taller	
Otras	

MECANISMOS DE EVALUACIÓN

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	UTILIZACIÓN EN EL CURSO
Exámenes parciales	✓
Examen final	✓
Trabajos y tareas fuera del aula	✓
Exposición de seminarios por los alumnos	✓
Participación en clase	✓
Asistencia	✓

PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA					
LICENCIATURA	POSGRADO	ÁREA	ÁREA DESEABLE		
		INDISPENSABLE			
Ingeniería Química o	Ingeniería en	Procesos			
Ingeniería Industrial	Procesos	Industriales			
Química Industrial o,					
Con experiencia docente					