

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

PROGRAMA DE LA ASIGNATURA DE:

Aplicación de la Electroquímica en el Medio Ambiente

IDENTIFICACIÓN DE LA ASIGNATURA		
MODALIDAD:	Curso	
TIPO DE ASIGNATURA:	Teórico - Práctica	
SEMESTRE EN QUE SE IMPARTE:	SE IMPARTE: Octavo	
CARÁCTER DE LA ASIGNATURA:	A: Obligatoria de elección	
NÚMERO DE CRÉDITOS: 9		

HORAS A LA SEMANA: 6	TEÓRICAS: 3	PRÁCTICAS:	3	SEMANAS DE CLASES:	16	TOTAL DE HORAS:	96
-------------------------	-------------	------------	---	--------------------------	----	--------------------	----

SERIACIÓN: Si () No (X) Obligatoria ()	Indicativa ()
ASIGNATURA ANTECEDENTE:	Ninguna	
ASIGNATURA SUBSECUENTE:	Ninguna	

OBJETIVOS GENERALES:

Aplicará los conceptos de Ingeniería Electroquímica al diseño y evaluación de los diferentes procesos e incluirá el empleo de sensores utilizados en la medición y control de la contaminación.

ÍNDICE TEMÁTICO **TEMAS** HORAS **HORAS** UNIDAD **TEÓRICAS** PRÁCTICAS Procesos Electroquímicos para el Tratamiento de 1 Efluentes Contaminados y el Reciclado de Materias 8 8 **Primas** Recuperación de Metales por Reducción Catódica 8 8 Destrucción de Contaminantes en Agua por vía 8 3 8 Electroquímica Procesos de Membrana para el Tratamiento de 5 4 5 Aguas 5 Remediación Electrocinética Métodos Electroquímicos para la Medición y el 7 6 7 Control de la Contaminación Las Industrias Electroquímicas como Fuente de 5 7 5 Contaminación TOTAL DE HORAS TEÓRICAS 48 0 TOTAL DE HORAS PRÁCTICAS 0 48 **TOTAL DE HORAS** 96

CONTENIDO TEMÁTICO

1. Procesos Electroquímicos para el Tratamiento de Efluentes Contaminados y el Reciclado de Materias Primas

- 1.1. Clasificación.
- 1.2. Comparación con otros métodos: precipitación, ósmosis inversa, adsorción e intercambio iónico.

2. Recuperación de Metales por Reducción Catódica

- 2.1. Características de las reacciones de deposición de metales en soluciones diluidas Cinética.
 - 2.1.1. Criterios de diseño de reactores para tratamiento electrolíticos.
 - 2.1.2. Importancia del área de electrodos y la velocidad de transporte de materia.
 - 2.1.3. Diseños de celdas más comunes.
 - 2.1.4. Electrodos. Separadores.
 - 2.1.5. Geometrías más utilizadas: cilindro rotatorio, con electrodos de lecho fijo, fluidizado o móvil, filtro prensa.
- 2.2. Procesos de tratamiento y reciclado.
- 2.3 Combinación de sistemas electroquímicos con otros procesos.

3. Destrucción de Contaminantes en Agua por vía Electroquímica

- 3.1. Desinfección del agua: aspectos básicos.
- 3.2. Oxidantes más comunes generados por vía electroquímica: cloro y derivados, ozono.
- 3.3. Características del diseño de un electrolizador para producción de cloro y ozono para desinfección.
- 3.4. Oxidación de cianuro directa e indirecta.
- 3.5 Oxidación de compuestos orgánicos por electrólisis directa o indirecta.
- 3.6. Electroreducción de compuestos halogenados.
- 3.7. Fotoelectroquímica y tratamientos combinado electrólisis y fotólisis.
- 3.8 Electroflotación.
- 3.9 Electrocoagulación.
- 3.10 Electrofloculación.

4. Proceso de Membrana para el Tratamiento de Aguas

- 4.1. Membranas de intercambio iónico.
- 4.2. Características y propiedades.
- 4.3. Procesos de transporte en las membranas.
- 4.4 Electrodiálisis.
- 4.5 Polarización.
- 4.6 Diseño de celdas.
- 4.7 Reciclado de soluciones electrolíticas. Salt-splitting.

5. Remediación Electrocinética

- 5.1. Fundamentos del transporte de especies en suelos bajo la acción de un campo eléctrico.
- 5.2. Electroósmosis.
- 5.3 Electromigración.
- 5.4. Electroforesis.
- 5.5 Combinación de los distintos tipos de transporte en suelos.
 - 5.5.1 Aplicación a la remediación de suelos contaminados con Cr(VI), hidrocarburos aromáticos y polinucleares.

6. Métodos Electroquímicos para la Medición y el Control de la Contaminación

- 6.1. Sensores.
 - 6.1.1. Potenciométricos.
 - 6.1.2. Ion selectivo.
 - 6.1.3. Dispositivos portátiles y en línea.
 - 6.1.4. Sensores de gases.
 - 6.1.5. Sensores de gases por conductividad de polímeros conductores.
 - 6.1.6. Sensor de oxígeno.
 - 6.1.7. Biosensores electroquímicos.

7. La Industria Electroquímica como Fuente de Contaminación

- 7.1 Pilas y baterías como fuente de metales pesados: mercurio, plomo, zinc, cadmio.
- 7.2 Galvanoplastia: manejo de las aguas de lavado.
- 7.3 El problema del mercurio en la industria de cloro-sosa.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- John, O'M. and Amulya, K.N. Reddy (2001) Sensors and Modern Electrochemistry: Electrodics in Chemistry, Engineering, Biology and Environmental Science. Kluwer Academic Plenum Publisher.
- Electrochemistry for the Environment (2008). Christos Comninellis and Guohua Chen editors. Berlin: Springer.

BIBLIOGRAFÍA BÁSICA

• Ibañez, Jorge G. (2002). Environmental Electrochemistry: Fundamentals and Applications in Pollution. San Diego: Academic Press.

SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDÁCTICAS	UTILIZACIÓN EN EL CURSO
Exposición oral	✓
Exposición audiovisual	✓
Actividades prácticas dentro de clase	✓
Ejercicios fuera del aula	✓
Seminarios	✓
Lecturas obligatorias	✓
Trabajo de investigación	✓
Prácticas de laboratorio	✓
Otras	

MECANISMOS DE EVALUACIÓN

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	UTILIZACIÓN EN EL CURSO
Exámenes parciales	✓
Examen final	√
Trabajos y tareas fuera del aula	✓
Actividades Prácticas	✓
Exposición de seminarios por los alumnos	✓
Participación en clase	✓
Asistencia	✓

PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA				
LICENCIATURA	POSGRADO	ÁREA	ÁREA DESEABLE	
		INDISPENSABLE		
Química, Química	Ciencias			
Industrial	Químicas			
Con experiencia docente				