

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA

				CUAUTITL			
DENOMINACIÓN DE LA ASIGNATURA:							
Ingeniería de Control							
IDENTIFICACIÓN DE LA ASIGNATURA							
MODALIDAD: Curso							
TIPO DE ASIGNATURA: Teórico – Práctica							
SEMESTRE EN QUE SE IMPARTE: Sexto							
CARÁCTER DE LA ASIGNATURA: Obligatoria							
NÚMERO DE CRÉDITOS: 10							
HORAS DE CLASE A LA 6 SEMANA:	Teóricas: 4	Prácticas: 2	Semanas de clase:	TOTAL DE 96 HORAS:			
SERIACIÓN INDICATIVA ANTECEDENTE: Análisis de Señales y Sistemas							
SERIACIÓN OBLIGATORIA SUBSECUENTE: Sistemas de Datos Muestreados							

OBJETIVO GENERAL

Al finalizar el curso el alumno será capaz de comprender los principales métodos de análisis y diseño de los sistemas de control de tiempo continuo.

ÍNDICE TEMÁTICO				
UNIDAD	TEMAS	Horas Teóricas	Horas Prácticas	
1	Introducción a los sistemas de control	8	4	
2	Análisis de estabilidad	8	4	
3	Análisis del lugar geométrico de las raíces	8	4	
4	Análisis de respuesta en el tiempo	8	4	
5	Análisis de respuesta en frecuencia de sistemas de control	8	4	
6	Acciones básicas de control y compensación utilizando controladores	10	8	
7	Análisis de Sistemas Continuos mediante variables de estado	10	4	
8	Análisis de estabilidad de Liapunov	4		
	Total de Horas	64	32	
	Suma Total de las Horas	(96	

CONTENIDO TEMÁTICO

1. INTRODUCCIÓN A LOS SISTEMAS DE CONTROL

- 1.1. Definiciones básicas de sistemas de control.
 - 1.1.1. Planta.
 - 1.1.2. Proceso.
 - 1.1.3. Perturbación.
 - 1.1.4. Control realimentado.
 - 1.1.5. Sistemas de control de procesos.
- 1.2. Sistemas de control de lazo abierto y sistemas de control de lazo cerrado.
 - 1.2.1. Ventajas y desventajas de los sistemas de lazo abierto y lazo cerrado.
- 1.3. Representación de sistemas mediante diagramas de bloques.
 - 1.3.1. Reglas para la reducción de diagramas de bloques.
 - 1.3.2. Obtención de la función de transferencia en el dominio de Laplace a través de diagramas de bloques.
- 1.4. Representación de sistemas mediante reogramas.
 - 1.4.1. Analogías de diagramas de bloques con reogramas.
 - 1.4.2. Fórmula de Mason para reducción de reogramas.
 - 1.4.3. Obtención de la función de transferencia en el dominio de Laplace a través de reogramas.
- 1.5. Solución a través de herramientas y simuladores computacionales.

2. ANÁLISIS DE ESTABILIDAD

- 2.1. Concepto de estabilidad.
 - 2.1.1. Sistema estable.
 - 2.1.2. Sistema marginalmente estable.
 - 2.1.3. Sistema inestable.
- 2.2. Grados de estabilidad.
 - 2.2.1. Estabilidad absoluta.
 - 2.2.2. Estabilidad relativa.
- 2.3. Técnicas de análisis de estabilidad.
 - 2.3.1. Criterio de Routh Hurwitz.
 - 2.3.2. Criterio de Nyquist.
 - 2.3.3. Análisis por diagramas de Bode: Margen de ganancia y margen de fase.
 - 2.3.4. Análisis por diagramas de Nichols.
- 2.4. Solución a través de herramientas y simuladores computacionales.

3. ANÁLISIS DE LUGAR GEOMÉTRICO DE LAS RAÍCES

- 3.1. Definición de lugar geométrico de las raíces.
- 3.2. Condiciones de magnitud y de ángulo.
- 3.3. Reglas para el trazado del lugar geométrico de las raíces.
- 3.4. Análisis de sistemas de control empleando lugar geométrico de las raíces (LGR).
- 3.5. Compensación empleando técnicas de LGR.
- 3.6. Solución a través de herramientas y simuladores computacionales.

4. ANÁLISIS DE RESPUESTA EN EL TIEMPO

- 4.1. Análisis de sistemas de primero y segundo grado en el dominio de Laplace.
 - 4.1.1. Respuesta en el tiempo a través de fracciones parciales y antitransformada de Laplace.
 - 4.1.2. Respuesta transitoria.
 - 4.1.3. Respuesta permanente.
- 4.2. Análisis de error en estado estable.
 - 4.2.1. Coeficiente de error estático de posición.
 - 4.2.2. Coeficiente de error estático de velocidad.
 - 4.2.3. Coeficiente de error estático de aceleración.
- 4.3. Índices de comportamiento.
 - 4.3.1. Especificaciones de respuesta transitoria.

5. ANÁLISIS DE RESPUESTA EN FRECUENCIA DE SISTEMAS DE CONTROL

- 5.1. Obtención de la respuesta en frecuencia de funciones de transferencia de sistemas de control.
- 5.2. Determinación de las frecuencias de corte de la función de transferencia.
- 5.3. Ancho de banda.
- 5.4. Determinación de funciones de transferencia a través de datos experimentales.
- 5.5. Compensación empleando técnicas de respuesta en frecuencia.

6. ACCIONES BÁSICAS DE CONTROL Y COMPENSACIÓN UTILIZANDO CONTROLADORES

- 6.1. Definición de controladores.
- 6.2. Acciones básicas de control.
 - 6.2.1. Control de dos posiciones (On Off).
 - 6.2.2. Control proporcional (P).
 - 6.2.3. Control integral (I).
 - 6.2.4. Control derivativo (D).
 - 6.2.5. Control proporcional integral (PI).
 - 6.2.6. Control proporcional derivativo (PD).
 - 6.2.7. Controlador proporcional integral y derivativo (PID).
- 6.3. Realización práctica de controladores.
- 6.4. Compensación de sistemas de control empleando controladores.
- 6.5. Sintonización de controladores.

7. ANÁLISIS DE SISTEMAS CONTINUOS MEDIANTE VARIABLES DE ESTADO

- 7.1. Limitaciones de la teoría de control convencional.
 - 7.1.1. Sistemas de una entrada una salida (SISO).
 - 7.1.2. Sistemas de múltiples entradas y múltiples salidas (MIMO).
 - 7.1.3. Ventajas del análisis con variables de estado.
- 7.2. Definición de estado y variables de estado
- 7.3. Ecuaciones de estado de sistemas lineales e invariantes.
- 7.4. Formas canónicas de las ecuaciones de estado.
- 7.5. Ecuaciones de estado de sistemas continuos.
 - 7.5.1. Obtención de las ecuaciones de estado a partir de la función de transferencia.

- 7.6. Solución de las ecuaciones de estado a través de la matriz de transición.
- 7.7. Matriz de transferencia y matriz de respuesta.
- 7.8. Análisis de Controlabilidad.
- 7.9. Análisis de Observabilidad.

8. ANÁLISIS DE ESTABILIDAD DE LIAPUNOV

- 8.1. Definiciones.
- 8.2. Análisis de la estabilidad de sistemas lineales.
- 8.3. Análisis de la estabilidad de sistemas no lineales.

PRÁCTICAS DE LABORATORIO

- 1. Descripción de equipo de laboratorio.
- 2. Sistemas de lazo abierto.
- 3. Sistemas de lazo cerrado.
- 4. Sistemas de lazo cerrado con variación en ganancia.
- 5. Modelado de sistemas.
- 6. Control de lazo cerrado con realimentación unitaria.
- 7. Sistemas de primer orden, respuesta transitoria del motor de C.D.
- 8. Simulación de un sistema de segundo orden.
- 9. Control de posición empleando controladores.
- 10. Respuesta en frecuencia de un sistema de primer orden.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- Ogata, Katsuhiko, Ingeniería de Control Moderna, Pearson Educacion, 2ª Edicion, México, 2003.
- Domínguez Crespo Sergio, *Control en el espacio de estado,* Pearson Prentice Hall, España, 2006.
- Dorf, Richard C., Sistemas de Control Moderno, Pearson Educacion de México, 10^a Edición, México, 2005.
- Navarro Rina, Ingeniería de control: Analógica y Digital, McGraw Hill Interamericana, 1ª Edición, México, 2004.

BIBLIOGRAFÍA COMPLEMENTARIA

- Kuo, Benjamín C., Sistemas de control automático, Prentice Hall, México, 2006.
- Márquez, Richard, Control de Sistemas no lineales, Perason Educación de México, 1ª Edición, España, 2005.
- Bolton, W, *Ingeniería de Control*, 2ª Edición, Alfa Omega, México, 2001.
- Rao V., Control Systems, Alpha Science International Ltd. India, 2008.

SITIOS WEB RECOMENDADOS

- http://www.dgbiblio.unam.mx (librunam, tesiunam, bases de datos digitales)
- http://www.copernic.com

SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDÁCTICAS	A UTILIZAR
Exposición oral	X
Exposición audiovisual	X
Ejercicios dentro de clase	X
Ejercicios fuera del aula	X
Lecturas obligatorias	X
Trabajo de investigación	X
Practicas de laboratorio	X
Practicas de campo	
Otras	

MECANISMOS DE EVALUACIÓN

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	A UTILIZAR
Exámenes parciales	X
Examen final	X
Trabajos y tareas fuera del aula	X
Participación en clase	X
Asistencia	
Exposición de seminarios por los alumnos	

PERFIL PROFESIOGRAFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA						
LICENCIATURA	POSGRADO	ÁREA INDISPENSABLE	ÁREA DESEABLE			
Ingeniería Mecánica	en Ingeniería	Control	Electrónica			
Eléctrica o, Ingeniería en	o, Control					
Electrónica y						
Comunicaciones o,						
Ingeniería en Control						