

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA

PROGRAMA DE LA ASIGNATURA DE:							
Electricidad y Magnetismo							
IDENTIFICACIÓN DE LA ASIGNATURA							
MODALIDAD: Curso							
TIPO DE ASIGNATURA: Teórico - Práctica							
SEMESTRE EN QUE SE IMPARTE: Tercero							
CARÁCTER DE LA ASIGNATURA: Obligatoria							
NÚMERO DE CRÉDITOS: 10							
HORAS DE				Semana		TOTAL	
CLASE A 6	Teórica 1	Prácticas	2	s de	16	DE	96
LA	s:	:	2	clase:	10	HORAS:	90
SEMANA:				Clase.		HUKAS.	
SERIACIÓN INDICATIVA ANTECEDENTE: Cálculo Vectorial							
SERIACIÓN INDICATIVA SUBSECUENTE: Circuitos Eléctricos							

OBJETIVO GENERAL

Al finalizar el curso el alumno será capaz de analizar los conceptos, principios y leyes fundamentales del electromagnetismo. Así como desarrollar su capacidad de observación y su habilidad en el manejo de instrumentos para la solución de problemas prácticos.

ÍNDICE TEMÁTICO				
UNIDAD	TEMAS	Horas Teóricas	Horas Prácticas	
1	Campo y Potencial Eléctrico	18	8	
2	Capacitancia y Dieléctricos	8	4	
3	Circuitos Eléctricos	10	6	
4	Imanes y Propiedades Magnéticas de la Materia 6		4	
5	Campo Magnético	12	4	
6	Inducción Electromagnética	10	6	
	Total de Horas	64	32	
	Suma Total de las Horas	g	96	

CONTENIDO TEMÁTICO

1. CAMPO Y POTENCIAL ELÉCTRICO

- 1.1. Descripción de carga electrica y su naturaleza.
- 1.2. Análisis de los procesos de carga y descarga de los cuerpos.
- 1.3. Presentación de la ley de Coulomb.
- 1.4. Campo eléctrico.
- 1.5. Ley de Gauss.
- 1.6. Potencial eléctrico y diferencia de potencial.

2. CAPACITANCIA Y DIELÉCTRICOS

- 2.1. Capacitor y capacitancia.
 - 2.1.1 Definición de capacitancia y capacitor.
 - 2.1.2 Descripción de los diferentes tipos de capacitores.
 - 2.1.3 Simbología, características y obtención de valores de capacitancia en capacitores.
 - 2.1.4 Cálculo de capacitores en diferentes formas geométricas.
- 2.2. Conexión de capacitores.
 - 2.2.1 Conexión de capacitores en serie. Cálculo de la capacitancia equivalente y energía electrostática almacenada.
 - 2.2.2 Conexión de capacitores en paralelo. Cálculo de la capacitancia equivalente y energía electrostática almacenada.
- 2.3. Efecto de los dieléctricos en los capacitores.

3. CIRCUITOS ELÉCTRICOS

- 3.1. Intensidad de corriente eléctrica.
 - 3.1.1. Definición del concepto corriente eléctrica y la unidad de medida.
 - 3.1.2. Clasificación de los tipos de corrientes.
- 3.2. Resistencia y ley de Ohm.
 - 3.2.1. Ley de Ohm y definición de resistividad.
 - 3.2.2. Análisis del efecto de la variación de la resistividad con la temperatura.
 - 3.2.3. Resistencia en un conductor.
 - 3.2.4. Concepto de Resistor y presentación de los diferentes tipos.
- 3.3. Potencia eléctrica.
- 3.4. Conexión de resistencias en corriente directa.
 - 3.4.1. Conexión de resistores en serie. Cálculo de resistencia equivalente y potencia eléctrica.
 - 3.4.2. Conexión de resistores en paralelo. Cálculo de resistencia equivalente y potencia eléctrica.
- 3.5. Concepto y definición de fuentes de fuerza electromotriz.
 - 3.5.1. Definición de Fuerza electromotriz y fuentes de fuerza electromotriz.
 - 3.5.2. Explicación de los conceptos de fuente ideal y resistencia interna.
- 3.6. Leves de Kirchhoff.
 - 3.6.1. Descripción de las leyes de Kirchhoff a partir de los principios de la conservación de la carga y de la energía.
 - 3.6.2. Aplicación de las leyes de Kirchhoff para análisis de circuitos resistivos

4. IMANES Y PROPIEDADES MAGNÉTICAS DE LA MATERIA

- 4.1. Definición de imán.
- 4.2. Configuraciones de las líneas de campo magnético para diferentes formas geométricas (imán recto, imán en U, toroide).
- 4.3. Susceptibilidad magnética, permeabilidad y permeabilidad relativa.
- 4.4. Materiales paramagnéticos, diamagnéticos y ferromagnéticos.
- 4.5. Ciclo de histéresis.

5. CAMPO MAGNÉTICO

- 5.1. Campo magnético.
- 5.2. Fuerza magnética.
- 5.3. Ley de gauss para el magnetismo.
- 5.4. Ley de Ampere.

6. INDUCCIÓN ELECTROMAGNÉTICA

- 6.1. Ley de Faraday y principio de Lenz.
- 6.2. Fuerza electromotriz inducida.
- 6.3. Fuerza electromotriz alterna.
 - 6.3.1. Descripción de la fuerza electromotriz del tipo senoidal.
 - 6.3.2. Definición de voltaje pico pico, voltaje pico, voltaje medio y voltaje eficaz.
 - 6.3.3. Definición de periodo y frecuencia.
- 6.4. Inductancia.
 - 6.4.1. Definición de inductor, inductancia propia y mutua.
- 6.5. Operación de un motor generador.
- 6.6. Transformador eléctrico monofásico.

PRÁCTICAS PROPUESTAS

- 1. Carga eléctrica, campo y potencial eléctrico.
- 2. Capacitancia y capacitores.
- 3. Constantes dieléctricas y rigidez dieléctrica.
- 4. Resistencia óhmica, resistividad v lev de ohm.
- 5. Uso y manejo del osciloscopio.
- 6. Fuentes de fuerza electromotriz.
- 7. Leyes de Kirchhoff y circuitos R.C.
- 8. Campos magnéticos estacionarios.
- 9. Ley de la inducción electromagnética de Faraday.
- 10. Propiedades magnéticas de la materia.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- Sears Zemansky, Young y Freedman, *Física Universitaria, Volumen II.* México, Editorial Pearson-Addison Wesley, 2005.
- Resnick Halliday -Krane, Física volumen II, México, Editorial CECSA, 2005.
- Jaramillo Morales. G., Electricidad y magnetismo, México, Editorial Trillas, UNAM, Facultad de ingeniería, 2008.
- Serway, R. A., Jhon W. Jewett Jr., *Física para ciencias e ingeniería, Volumen II*, México, Editorial Thomson, 2005.
- Bueche Frederick J., *Física para estudiantes de ciencias e ingeniería tomo II.* México, Editorial Mc Graw Hill, 2002.

BIBLIOGRAFÍA COMPLEMENTARIA

- Eisberg Robert, *Física fundamentos y aplicaciones,* España, Editorial Mc Graw Hill/Interamericana, 2004.
- Purcel, Edward M. *Electricidad y magnetismo*, México, Editorial Reverte, 2005.
- Escamilla Reyes José Luis, *Electricidad y magnetismo ejercicios y problemas, México,* Editorial Just In Time Press, 2010.
- Sadiku M., *Elementos de Electromagnetismo*, México, Editorial CECSA, 2002.
- F. D. Kraus Jon, *Electromagnetismo*, México, Editorial Mc Graw Hill, 2000.

SITIOS WEB RECOMENDADOS

- http://www.física.com.org
- http://www.tochtli.física.uson.mx
- http://www.fisicanet.conm.org
- http://www.unicrom.com

SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDÁCTICAS	UTILIZACIÓN EN EL CURSO
Exposición oral	✓
Exposición audiovisual	✓
Ejercicios dentro de clase	✓
Ejercicios fuera del aula	✓
Lecturas obligatorias	✓
Trabajo de investigación	✓
Prácticas de laboratorio	✓
Prácticas de campo	
Otras	

MECANISMOS DE EVALUACIÓN

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	UTILIZACIÓN EN EL CURSO
Exámenes parciales	✓
Examen final	✓
Trabajos y tareas fuera del aula	✓
Participación en clase	✓
Asistencia	✓
Exposición de seminarios por los alumnos	

PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA					
LICENCIATURA	POSGRADO	ÁREA	ÁREA DESEABLE		
		INDISPENSABLE			
Ingeniería Mecánica	Maestría en	Ingeniería	Electromagnetismo		
Eléctrica o, Física o,	Ciencias				
Físico Matemáticas					