

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA

PROGRAMA DE LA ASIGNATURA DE:						
INTELIGENCIA ARTIFICIAL I						
IDENTIFICACIÓN DE LA ASIGNATURA						
MODALIDAD:	Curso					
TIPO DE ASIGNATURA:	Teórico-Práctica					
SEMESTRE EN QUE SE IMPARTE: Octavo ó Noveno						
CARÁCTER DE LA ASIGNAT	URA: Optativa paquete terminal					
NÚMERO DE CRÉDITOS:	6					
HORAS A LA SEMANA: Teóricas:	2 Prácticas: 2 Semanas de clase: 16 DE 64 HORAS:					
SERIACIÓN: Si (X)	No () Obligatoria (X) Indicativa ()					
SERIACIÓN ANTECEDENTE: Seriación por bloques. Haber aprobado por lo menos el 80% de las asignaturas de los 6 primeros semestres						
SERIACIÓN SUBSECUENTE:	Ninguna					

OBJETIVO GENERAL:

Al finalizar el curso el alumno deberá ser capaz de:

Entender qué es la inteligencia artificial y cómo ayuda a la ingeniería química, a través del uso de los sistemas expertos y las redes neuronales artificiales de retropropagación en problemas de correlación multivariable.

ÍNDICE TEMÁTICO					
UNIDAD	TEMAS	Horas Teóricas	Horas prácticas		
1	Inteligencia Artificial	4	2		
2	Sistemas Expertos	14	14		
3	Redes Neuronales Artificiales	14	16		
	TOTAL DE HORAS TEÓRICAS		0		
	TOTAL DE HORAS PRÁCTICAS	0	32		
	TOTAL DE HORAS	64			

CONTENIDO TEMÁTICO

1. INTELIGENCIA ARTIFICIAL

- 1.1. Inteligencia artificial. Perspectiva histórica.
- 1.2. La inteligencia artificial hoy en día. Sus metas.
- 1.3. Áreas de estudio.
- 1.4. Sus usos en ingeniería química.

2. SISTEMAS EXPERTOS

- 2.1. Partes de un sistema experto.
 - 2.1.1. La máquina de inferencias.
 - 2.1.2. El mecanismo de control.
 - 2.1.3. La base de conocimientos.
- 2.2. Representación del conocimiento.
 - 2.2.1. Grafos.
 - 2.2.2. Frames.
 - 2.2.3. Scripts.
 - 2.2.4. Otros.
- 2.3. Tipos de Búsqueda.
- 2.4. Tipos de inferencia.
 - 2.4.1. La deducción.
 - 2.4.2. La inducción.
 - 2.4.3. La abducción.
 - 2.4.4. Otros.
- 2.5. Monotonicidad y no monotonocidad.
- 2.6. Implementación de los sistemas expertos.
- 2.7. Ejercicios.

3. REDES NEURONALES ARTIFICIALES

- 3.1. Introducción.
- 3.2. Procesos de Aprendizaje.
 - 3.2.1. Aprendizaje supervisado.
 - 3.2.1.1. Perceptrones de una Capa.
 - 3.2.1.2. Perceptrones de Varias Capas.
 - 3.2.2. Aprendizaje no supervisado.
 - 3.2.2.1. Redes de Kohonen (funciones de correspondencia que se auto organizan).
- 3.3. Aplicaciones a la ingeniería química.
- 3.4. Ejercicios.

ACTIVIDADES PRÁCTICAS:

Durante las sesiones prácticas se realizará la resolución de problemas que se relacionen con las unidades temáticas descritas; estas actividades deberán reflejar

el número de horas prácticas señaladas en este programa y serán consideradas en la evaluación final de la asignatura.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA:

- Poole, D. L., Mackworth, A. K. Artificial intelligence: foundations of computational agents. Cambridge University Press. New York. 2010.
- Aguiló, I., Valverde, L. and Escrig, M. T. Artificial intelligence research and development. Amsterdam: IOS; Tokyo: Ohmsha. 2003.
- Jones, M. T. Artificial intelligence: a systems approach. Hingham: Infinity Science. 2008.
- Luger, G. F. Artificial Intelligence. Structures and strategies for complex problem solving. 5nd ed. Addison Wesley. 2005.
- Quantrille, T. E. and Liu, Y. A. Artificial Intelligence in Chemical Engineering. Academic Press. USA. 1992.
- Giarratano, J., Riley, G. Expert Systems. Principles and Programming. 4th ed. PWS-Course Technology. 2004.
- Meyer, B. Construcción de Software Orientado a Objetos. Pearson Education. México. 1999.
- Russell, J. S., Norving P. Artificial intelligence. A modern approach. 3rd ed. Prentice Hall. 2010.

BIBLIOGRAFÍA COMPLEMENTARIA:

- Haykin, S. Neural Networks. A Comprehensive Foundation. 3rd ed. Prentice-Hall. UpperSaddle River, New Jersey. 2008.
- Samarasinghe, S. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition. Auerbach publications. 2006.
- Rao, M. A., Srinivas, J. Neural networks: algorithms and applications. Alpha Science International. Pangbourne, England. 2003.

CIBERGRAFÍA:

- http://www.gestiopolis.com/recursos/documentos/fulldocs/ger1/apliintarti.htm
- http://electronica.com.mx/neural/
- http://www.informaticaintegral.net/sisexp.html

SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDÁCTICAS	UTILIZACIÓN EN EL CURSO	
Exposición oral	Χ	
Exposición audiovisual		
Actividades prácticas dentro de clase	X	
Ejercicios fuera del aula	X	
Seminarios		
Lecturas obligatorias	Χ	
Trabajo de investigación	Χ	
Prácticas de Taller		
Taller de resolución de problemas asistidos por el profesor	X	
Otras		

MECANISMOS DE EVALUACIÓN.

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	UTILIZACIÓN EN EL CURSO
Exámenes parciales	X
Examen final	X
Trabajos y tareas fuera del aula	X
Exposición de seminarios por los alumnos.	
Participación en clase	X
Taller de resolución de problemas asistidos por el profesor	X
Asistencia	

PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA						
LICENCIATURA	POSGRADO	ÁREA	ÁREA DESEABLE			
		INDISPENSABLE				
Ingeniería Química		Inteligencia Artificial				
Con experiencia docente						