

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA

PROGRAMA DE LA ASIGNATURA DE:							
FENÓMENOS DE TRANSPORTE EN INGENIERÍA BIOMÉDICA							
IDENTIFICACIÓN DE LA ASIGNATURA							
MODALIDAD	:		Cı	urso			
TIPO DE ASIGNATURA: Teórico-Práctica							
L	SEMESTRE EN QUE SE IMPARTE: Octavo ó Noveno						
CARÁCTER I	DE L	A ASIGNAT	UR/	A: Optativa d	el Pa	aquete Termina	al
NÚMERO DE CRÉDITOS: 6							
HORAS A LA SEMANA:	4	Teóricas:	2	Prácticas:	2	Semanas de clase:	TOTAL DE 64 HORAS:
SERIACIÓN:	Si ((X)	No (() Ob	igato	oria (X)	Indicativa ()
SERIACIÓN ANTECEDENTE: Seriación por bloques. Haber aprobado por lo							
menos el 80% de las asignaturas de los 6 primeros semestres							
SERIACIÓN SUBSECUENTE: Ninguna							

OBJETIVO GENERAL

Utilizar sus conocimientos de dinámica de fluidos, transferencia de calor, transferencia de masa, termodinámica y cinética química para describir matemáticamente los fenómenos hidrodinámicos, térmicos y difusionales que ocurren en el cuerpo humano, lo cual le servirá como base para emprender el análisis del comportamiento fisiológico del cuerpo humano y la caracterización de procesos de distribución, metabolismo y excreción de medicamentos, así como el diseño preliminar de órganos y tejidos.

ÍNDICE TEMÁTICO				
UNIDAD	TEMAS	Horas Teóricas	Horas prácticas	
1	Reología y Transporte de la sangre	4	4	
2	Transporte de Gas	4	4	
3	Farmacocinética	4	4	
4	Diseño de Tejidos	4	4	
5	Diseño de Órganos Artificiales	6	6	
6	Transporte de Biocalor	4	4	
	TOTAL DE HORAS TEÓRICAS	32	0	
	TOTAL DE HORAS PRÁCTICAS	0	32	
	TOTAL DE HORAS	64		

CONTENIDO TEMÁTICO

1. REOLOGÍA Y TRANSPORTE DE LA SANGRE

- 1.1. Modelos reológicos de la sangre
 - 1.1.1. Plástico de Bingham
 - 1.1.2. Fluido Psedudoplástico
 - 1.1.3. Modelo de potencia
 - 1.1.4. Modelo viscoelástico
- 1.2. Teoría de la zona marginal
- 1.3. Expresión explícita para la capa límite de plasma
- 1.4. Relaciones constitutivas
- 1.5. Ley de Newton de la viscosidad generalizada
- 1.6. Factores de fricción
- 1.7. Ecuación de Bernoulli para el flujo de sangre impulsado por el corazón
- 1.8. Ejercicios
- 1.9. Algoritmos computacionales

2. TRANSPORTE DE GASES

- 2.1. Oxigenación como una reacción reversible
- 2.2. Difusión de oxígeno en tejidos y la sangre
- 2.3. Cilindro tisular de Krogh
- 2.4. Formación de óxido nítrico y transporte y transporte en sangre y tejidos
- 2.5. Modelos matemáticos
- 2.6. Ejercicios

3. FARMACOCINÉTICA

- 3.1. ADME
- 3.2. Procesos de distribución y metabolismo en el cuerpo humano
- 3.3. Modelos Unicompartimentales
 - 3.3.1. Absorción de primer orden con eliminación
 - 3.3.2. Absorción de segundo orden con eliminación
 - 3.3.3. Absorción de orden cero con eliminación
 - 3.3.4. Absorción de Michaelis-Menten con eliminación
- 3.4. Análisis de reacciones simples en multicompartimentos cíclicos
- 3.5. Oscilaciones amortiguadas
- 3.6. Modelos multicompartimentales
- 3.7. Algoritmos computacionales
- 3.8. Ejercicios

4. DISEÑO DE TEJIDOS

- 4.1. Estructura tisular
- 4.2. Materiales biomiméticos
 - 4.2.1. Autoensamblaje

- 4.2.2. Cinética del equilibrio
- 4.2.3. Películas delgadas
- 4.2.4. Membranas
- 4.3. Diseño de tejidos bioartificiales
- 4.4. Algoritmos de cómputo
- 4.5. Ejercicios

5. DISEÑO DE ÓRGANOS ARTIFICIALES

- 5.1. Inmunoaislamiento
- 5.2. Páncreas bioartificial
- 5.3. Oscilaciones glicolíticas
- 5.4. Riñón artificial
- 5.5. Hígado Artificial
- 5.6. Pulmón artificial extracorpóreo
- 5.7. Diseño de un proceso de electrodiálisis
- 5.8. Algoritmos computacionales
- 5.9. Ejercicios

6. TRANSPORTE DE BIOCALOR

- 6.1. Las leyes de la termodinámica y el metabolismo
- 6.2. Conservación de la eneergía en el organismo
- 6.3. Propiedades termofísicas
- 6.4. Sensaciones de frío y calor en el organismo
- 6.5. Regulación de la temperatura anatómica humana
- 6.6. Ejercicios

ACTIVIDADES PRÁCTICAS:

La parte práctica de la asignatura corresponde a la resolución de problemas que se relacionen con las unidades temáticas descritas. Estas actividades deberán reflejar el número de horas prácticas señaladas en este programa y deben ser consideradas en la evaluación final de la asignatura.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA:

- Sharma, R. Transport Phenomena in Biomedical Engineering. Mc Graw Hill. 2010.
- Fournier, R. Basic Transport Phenomena in Biomedical Engineering. CRC Press. 2011.
- Katoh, S. Biochemical Engineering. A Textbook for Engineers, Chemists and Biologists. Wiley-VCH. Weinheim, Germany. 2011.
- King, M. R., Mody, N. A. Numerical and Statistical Methods for Bioengineering. Academic Press. USA. 2011.
- Lee, J. M. Biochemical Engineering. Prentice Hall. USA. 2009.

- García, A. Durand C. Bioengineering, Principles, Methodology and Applications. Nova Publications. USA. 2010.
- Chian, S., Chen, P. C. Y., Fung, Y. C. An introductory text to Bioengineering. World Scientific. USA. 2008.
- Staerbak, A., Mc Intire, L. V., San K. Y. Bioengineering Fundamentals. Pearson-Prentice Hall. USA. 2007.
- Enderle, J., Blanchard, S., Bronzino, J. Introduction to Biomedical Engineering. Academic Press. USA, 2005.
- Blanch, H. W, Douglas C. S. Biochemical Engineering. Academic Press, USA. 2002.
- Berger, S.A., Goldsmith, W., Lewis, E. R. Introduction to Bioengineering. Oxford. UK. 2000.

BIBLIOGRAFÍA COMPLEMENTARIA

- Vogel, H. C. Fermentation and Biochemical Engineering Handbook. Second edition. Noyes publications. USA. 2007.
- Clark, D. P., Pazdernik, N. Biotechnology. Academic Press. USA. 2008.
- Thieman, W. J., Palladino, M. A. Introduction to Biotechnology, 2nd edition. Benjamin Cummings. USA. 2008.
- Renneberg, R. Biotechnology for Beginners. Academic Press. USA. 2007.
- Walker, S. Biotechnology Demystified. Mc Graw Hill. USA. 2007.
- King, M. R. Celular Engineering. Academic Press. USA. 2006.

CIBERGRAFÍA

- http://www.biotechinstitute.org/biomedicalengineering
- http://www.biomedcentral.com/bmcbiomedicaleng/
- http://www.ejbiotechnology.info/index.php/ejbiotechnology

SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDÁCTICAS	UTILIZACIÓN EN EL CURSO
Exposición oral	X
Exposición audiovisual	X
Actividades prácticas dentro de clase	X
Ejercicios fuera del aula	X
Seminarios	
Lecturas obligatorias	
Trabajo de investigación	X
Prácticas de Taller	

MECANISMOS DE EVALUACIÓN.

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	UTILIZACIÓN EN EL CURSO
Exámenes parciales	X
Examen final	X
Trabajos y tareas fuera del aula	X
Exposición de seminarios por los alumnos.	
Participación en clase	X
Asistencia	

PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA						
LICENCIATURA	POSGRADO	ÁREA	ÁREA DESEABLE			
		INDISPENSABLE				
Ingeniería Química ó,	Biotecnología		Biotecnología			
Ingeniería Bioquímica						
Con experiencia docente						