

# UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA



| PROGRAMA DE LA ASIGNATURA DE:                                               |                                              |           |      |               |       |                      |                  |                       |     |
|-----------------------------------------------------------------------------|----------------------------------------------|-----------|------|---------------|-------|----------------------|------------------|-----------------------|-----|
| TEORÍA CINÉTICA COMPUTACIONAL                                               |                                              |           |      |               |       |                      |                  |                       |     |
| IDENTIFICACIÓN DE LA ASIGNATURA                                             |                                              |           |      |               |       |                      |                  |                       |     |
| MODALIDAD                                                                   | :                                            |           | Cı   | urso          |       |                      |                  |                       |     |
| TIPO DE ASIGNATURA: Teórico-Práctica                                        |                                              |           |      |               |       |                      |                  |                       |     |
|                                                                             | SEMESTRE EN QUE SE IMPARTE: Séptimo o Noveno |           |      |               |       |                      |                  |                       |     |
| CARÁCTER I                                                                  | DE L                                         | A ASIGNAT | UR/  | A: Optativa d | e ca  | mpo comple           | men <sup>-</sup> | tario                 |     |
| <b>NÚMERO DE</b>                                                            | CRÉ                                          | DITOS:    |      | 6             |       |                      |                  |                       |     |
| HORAS A LA<br>SEMANA:                                                       | 4                                            | Teóricas: | 2    | Prácticas:    | 2     | Semanas<br>de clase: | 16               | TOTAL<br>DE<br>HORAS: | 64  |
| SERIACIÓN:                                                                  | Si (                                         | X )       | No ( | ( ) Obl       | igato | oria ( X )           |                  | Indicativa (          | ( ) |
| SERIACIÓN ANTECEDENTE: Seriación por bloques: Se requiere haber cubierto el |                                              |           |      |               |       |                      |                  |                       |     |
| 80% de créditos de los 6 primeros semestres                                 |                                              |           |      |               |       |                      |                  |                       |     |
| SERIACIÓN SUBSECUENTE: Ninguna                                              |                                              |           |      |               |       |                      |                  |                       |     |

#### **OBJETIVO GENERAL**

Lograr que al finalizar el curso el alumno sea capaz de utilizar los conceptos relacionados a diferentes ramas de la teoría cinética, tales como autómatas celulares, retículas de gas, retículas de Boltzmann, dinámica browniana y métodos de Monte Carlo, para formular modelos matemáticos y algoritmos computacionales que permitan caracterizar fenómenos de transporte, reacciones químicas y dinámica interfacial, en equipos y operaciones unitarias, con aplicación a diseño en ingeniería química.

| ÍNDICE TEMÁTICO |                                        |                   |                    |  |
|-----------------|----------------------------------------|-------------------|--------------------|--|
| UNIDAD          | TEMAS                                  | Horas<br>Teóricas | Horas<br>prácticas |  |
| 1               | Teoría Cinética                        | 4                 | 2                  |  |
| 2               | Autómatas Celulares y Retículas de Gas | 2                 | 4                  |  |
| 3               | Retículas de Boltzmann                 | 12                | 12                 |  |
| 4               | Fenómenos Termohidrodinámicos          | 6                 | 6                  |  |
|                 | Complejos                              |                   |                    |  |
| 5               | Dinámica Browniana                     | 4                 | 4                  |  |
| 6               | Métodos de Monte Carlo                 | 4                 | 4                  |  |
|                 | TOTAL DE HORAS TEÓRICAS                | 32                | 0                  |  |
|                 | TOTAL DE HORAS PRÁCTICAS               | 0                 | 32                 |  |
|                 | TOTAL DE HORAS                         | 6                 | 64                 |  |

# **CONTENIDO TEMÁTICO**

# 1. TEORÍA CINÉTICA

- 1.1. Orígenes de la teoría cinética
- 1.2. Contribución de Maxwell a la teoría cinética
- 1.3. Aportaciones de Ludwig Boltzmann
- 1.4. La ecuación de Boltzmann
- 1.5. El teorema H de Boltzmann, entropía e información
- 1.6. Distribución de Maxwell-Boltzmann
- 1.7. Inversión de tiempo, ciclos de Poincaré y las Paradojas de Loschmidt y Zermello
- 1.8. El modelo de anillo de Kac y los Stossahlansatz
- 1.9. Ejercicios y algoritmos computacionales

### 2. AUTÓMATAS CELULARES Y RETÍCULAS DE GAS

- 2.1. Autómatas celulares
  - 2.1.1. Simulación de ondas químicas producidas por reacciones complejas
  - 2.1.2. Simulación de procesos de difusión y equilibrio
  - 2.1.3. Simulación de la dinámica de fluidos
- 2.2. Autómatas celulares de retículas de gas
  - 2.2.1. Fluidización y reglas de colisión
  - 2.2.2. Modelo FHP.
  - 2.2.3. Simulación de dinámica de fluidos sobre objetos sumergidos
  - 2.2.4. Simulación de procesos de difusión térmica
  - 2.2.5. Simulación de reacciones guímicas
- 2.3. Ejercicios y algoritmos computacionales

#### 3. RETÍCULAS DE BOLTZMANN

- 3.1. Formulación de la ecuación discreta de Boltzmann
- 3.2. El operador de colisión BGK
- 3.3. Aplicación del método de retículas de Boltzmann a procesos de difusión con reacción química
  - 3.3.1. Función de distribución al equilibrio
  - 3.3.2. Expansión de Chapman-Enskog
  - 3.3.3. Condiciones de frontera (Dirichlet, Neumann, de rebote, toroidal)
  - 3.3.4. Difusión unidimensional con reacción química. Algoritmo computacional
  - 3.3.5. Difusión bidimensional con reacción química. Algoritmo computacional
  - 3.3.6. Modelo de retículas para ondas guímicas
  - 3.3.7. Difusión axisimétrica. Algoritmo computacional
- 3.4. Aplicación a sistemas de reacción-difusión-convección
  - 3.4.1. Simulación de procesos de difusión-convección mediante redes de Boltzmann

- 3.4.2. Función de distribución al equilibrio
- 3.4.3. Expansión de Chapman-Enskog para sistemas de difusiónconvección 2D
- 3.4.4. Diseño de reactores de flujo en pistón isotérmicos
- 3.4.5. Diseño y optimización de reactores de membrana de enzima inmovilizada
- 3.4.6. Combustión en una capa porosa. Algoritmo computacional
- 3.4.7. Ejercicios
- 3.5. Dinámica de fluidos isotérmicos incompresibles
  - 3.5.1. Modelo de retículas de Boltzmann para la ecuación de Navier-Stokes
  - 3.5.2. Operador de colisión BGK
  - 3.5.3. Función de distribución al equilibrio
  - 3.5.4. Expansión de Chapman-Enskog para sistemas de dinámica de fluidos
  - 3.5.5. De la ecuación de retículas de Boltzmann a la ecuación de Navier-Stokes
  - 3.5.6. Algoritmo de retículas de Boltzmann para flujo entre placas paralelas
  - 3.5.7. Algoritmo de retículas de Boltzmann para flujo laminar axisimétrico
  - 3.5.8. Algoritmo para flujo a través de lechos porosos

## 4. FENÓMENOS TERMOHIDRODINÁMICOS COMPLEJOS

- 4.1. Inestabilidades hidrodinámicas
  - 4.1.1. Inestabilidad de Taylor-Couette
    - 4.1.1.1. Ecuaciones diferenciales gobernantes
    - 4.1.1.2. Modelo de retículas de Boltzmann
    - 4.1.1.3. Algoritmo computacional
    - 4.1.1.4. Aplicaciones en ingeniería química
  - 4.1.2. Inestabilidad de Rayleigh-Bénard
    - 4.1.2.1. Ecuaciones diferenciales gobernantes
    - 4.1.2.2. Modelo de retículas de Boltzmann
    - 4.1.2.3. Algoritmo computacional
    - 4.1.2.4. Aplicaciones en ingeniería química
  - 4.1.3. Inestabilidad de Bénard-Poiseuille
    - 4.1.3.1. Ecuaciones diferenciales gobernantes
    - 4.1.3.2. Modelo de retículas de Boltzmann
    - 4.1.3.3. Algoritmo computacional
    - 4.1.3.4. Aplicaciones en ingeniería química
  - 4.1.4. Modelo de retículas de Boltzmann para flujos turbulentos

#### 5. DINÁMICA BROWNIANA

- 5.1. Fenómenos de sedimentación
- 5.2. Fenómenos de acreción, floculación y electrofloculación
- 5.3. Formulación del modelo basado en dinámica browniana
- 5.4. Algoritmo computacional
- 5.5. Aplicaciones en ingeniería química

#### 6. MÉTODOS DE MONTE CARLO

- 6.1. Variables estocásticas discretas y continuas
- 6.2. Generación de números pseudoaleatorios
- 6.3. Método Metrópolis
- 6.4. Integración por Monte Carlo
- 6.5. Trayectorias aleatorias
- 6.6. Movimiento browniano
- 6.7. Simulación de procesos estocásticos
- 6.8. Simulación de procesos de difusión
- 6.9. Simulación de reacciones químicas
- 6.10. Simulación de sistemas de reacción difusión

## **ACTIVIDADES PRÁCTICAS**

La parte práctica de la asignatura corresponde a la resolución de problemas y a la elaboración de algoritmos de cómputo que se relacionen con las unidades temáticas descritas. Estas actividades deberán reflejar el número de horas prácticas señaladas en este programa y deben ser consideradas en la evaluación final de la asignatura.

# **BIBLIOGRAFÍA**

## **BIBLIOGRAFÍA BÁSICA:**

- Deville, M. O. & Thomas B. G. Mathematical Modelling for Complex Fluids and Flows. Springer. USA. 2012.
- Kauzmann, W. Kinetic Theory of Gases. Dover Books. New York, USA. 2012
- Nagnibeda, E. Non Equilibrium Reacting Gas Flows: Kinetic Theory of Transport and Relaxation Processes (Heat and Mass Transfer). Springer. USA. 2010.
- Succi, S. The Lattice Boltzmann Method for Fluid Dynamics and Beyond (Numerical Mathematics and Scientific Computation). Oxford University Press. USA, 2001.
- Mohamad, A. A. Lattice Boltzmann Method. Fundamentals and Engineering Applications with Computer Codes. Springer. USA. 2011.
- Sukop, M. C., Thorne D. T. Lattice Boltzmann Modeling, Springer, USA, 2010.
- Chang, Q., Iwan J. Application of Lattice Boltzmann Method. Thermal Multiphase Fluid Dynamics. Springer. Berlin, Germany. 2008.
- Wolf-Gladrow, D. Lattice Gas Cellular Automata and Lattice Boltzmann Models. Springer. USA. 2000.
- Hoekstra, A. G., Kroc, G. Slot, P. Simulating Complex Systems by Cellular Automata. Springer, USA. 2010.
- Li, T. M. Cellular Automata (Mathematics Research Development: Computer Science, Technology and Applications). Nova Science Publications. USA. 2011.

## **BIBLIOGRAFÍA COMPLEMENTARIA**

- Liboff, R. L. Kinetic Theory. Classical, Quantum and Relativistic Descriptions. Springer. USA. 2012.
- Zhou, J. G. Lattice Boltzmann Method for Shallow Water Flows. Springer. USA. 2010.
- Kier, L. B. Modeling Chemical Systems using Cellular Automata. Springer. Netherlands. 2005.
- Brush, S. G. The Kinetic Theory of Gases. Imperial College Press. UK. 2003.
- Yuang, P. Thermal Lattice Boltzmann Two-Phase Flow. VDM Verlag. Berlin, Germany 2009.
- Sone, Y. Kinetic Theory and Fluid Dynamics. Birkhauser. Berlin, Germany. 2002.

## **CIBERGRAFÍA**

- Kinetic Molecular Theory. http://www.chm.davidson.edu/vce/kineticmoleculartheory/basicconcepts.html
- Interactive Lattice Boltzmann. Tutorial based flow simulation and visualization. http://www.cs.kent.edu/~zhao/vis08tutorial/
- Lattice Boltzmann Scheme Tutorial. http://www.math.u-psud.fr/~fdubois/organisation/19janv2010/programme-2-19janv2010.pdf
- FHP Lattice Gas Automata Tutorial. http://softology.com.au/tutorials/latticegas/fhplga.htm
- Monte Carlo Simulations Tutorials. http://people.revoledu.com/kardi/tutorial/Simulation/index.html
- Introduction to Practice of Molecular Simulations: Molecular Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann. http://www.tumblr.com/tagged/brownian-dynamics

# SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

| SUGERENCIAS DIDÁCTICAS                             | UTILIZACIÓN<br>EN EL CURSO |
|----------------------------------------------------|----------------------------|
| Exposición oral                                    | X                          |
| Exposición audiovisual                             |                            |
| Actividades prácticas dentro de clase              | X                          |
| Ejercicios fuera del aula                          | X                          |
| Seminarios                                         |                            |
| Lecturas obligatorias                              |                            |
| Trabajo de investigación                           | X                          |
| Prácticas de Taller                                |                            |
| Elaboración de algoritmos computacionales en clase | X                          |
| Trabajo en sala de cómputo                         | X                          |
| Otras                                              |                            |

# MECANISMOS DE EVALUACIÓN.

| ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO<br>ENSEÑANZA-APRENDIZAJE | UTILIZACIÓN EN EL<br>CURSO |
|-----------------------------------------------------------------------|----------------------------|
| Exámenes parciales                                                    | x                          |
| Examen final                                                          | X                          |
| Trabajos y tareas fuera del aula                                      | X                          |
| Exposición de seminarios por los alumnos.                             |                            |
| Participación en clase                                                | X                          |
| Asistencia                                                            |                            |

| PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA |            |                    |               |  |  |
|--------------------------------------------------------------|------------|--------------------|---------------|--|--|
| LICENCIATURA                                                 | POSGRADO   | ÁREA INDISPENSABLE | ÁREA DESEABLE |  |  |
| Ingeniería Química                                           | Ingeniería |                    | Termodinámica |  |  |
|                                                              | Química ó  |                    | Estadística   |  |  |
|                                                              | Ciencias   |                    |               |  |  |
|                                                              | Químicas   |                    |               |  |  |
| Con experiencia docente                                      |            |                    |               |  |  |