

# UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA



| PROGRAMA DE LA ASIGNATURA DE:                                                                                                   |                                    |                 |                   |                    |  |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|-------------------|--------------------|--|
| PROBABILIDAD Y ESTADÍSTICA                                                                                                      |                                    |                 |                   |                    |  |
| IDENTIF                                                                                                                         | IDENTIFICACIÓN DE LA ASIGNATURA    |                 |                   |                    |  |
| MODALIDAD: Curso                                                                                                                |                                    |                 |                   |                    |  |
| TIPO DE ASIGNATURA:                                                                                                             | T                                  | eórico-Práctica |                   |                    |  |
| SEMESTRE EN QUE SE IMPA                                                                                                         | SEMESTRE EN QUE SE IMPARTE: Quinto |                 |                   |                    |  |
| CARÁCTER DE LA ASIGNATURA: Obligatoria                                                                                          |                                    |                 |                   |                    |  |
| NÚMERO DE CRÉDITOS:                                                                                                             |                                    | 7               |                   |                    |  |
| HORAS A LA 5 Teóricas:                                                                                                          | 2                                  | Prácticas: 3    | Semanas de clase: | TOTAL DE 80 HORAS: |  |
| SERIACIÓN: Si (X)                                                                                                               | Vo (                               | ( ) Obligato    | oria ( X )        | Indicativa ( )     |  |
| SERIACIÓN ANTECEDENTE: Seriación por bloques. Haber aprobado por lo menos el 80% de las asignaturas de los 3 primeros semestres |                                    |                 |                   |                    |  |
| SERIACIÓN SUBSECUENTE:                                                                                                          | Ν                                  | linguna         |                   |                    |  |

#### **OBJETIVO GENERAL:**

Al finalizar el curso, el alumno deberá ser capaza de:

Utilizar los conceptos y métodos de la teoría de probabilidad y estadística para inferir conclusiones cuantitativas a cerca del comportamiento de fenómenos aleatorios que ocurren en la naturaleza y en aplicaciones prácticas de procesos industriales, empezando desde la determinación del tamaño de las muestras de una población, los métodos de muestreo y el procesamiento de los datos estadísticos, pasando por el planteamiento de hipótesis y la comprobación de la misma, y llegando hasta el diseño de experimentos multifactoriales.

| ÍNDICE TEMÁTICO |                                                             |                   |                    |
|-----------------|-------------------------------------------------------------|-------------------|--------------------|
| UNIDAD          | TEMAS                                                       | Horas<br>Teóricas | Horas<br>prácticas |
| 1               | Introducción a la Probabilidad y Estadística                | 2                 | 0                  |
| 2               | Estadística Descriptiva. Organización de Datos Estadísticos | 2                 | 3                  |
| 3               | Estadística Descriptiva. Análisis de Datos Univariados      | 2                 | 3                  |
| 4               | Probabilidad                                                | 2                 | 3                  |
| 5               | Variables Aleatorias y Función de<br>Probabilidad           | 2                 | 3                  |
| 6               | Distribuciones de Probabilidad más<br>Comunes               | 2                 | 6                  |
| 7               | Inferencia Estadística                                      | 6                 | 6                  |

| 8  | Prueba de Hipótesis                    | 4  | 6  |
|----|----------------------------------------|----|----|
| 9  | Regresión Lineal Simple, Correlación y | 2  | 3  |
|    | Regresión no Lineal                    |    |    |
| 10 | Regresión Lineal Múltiple              | 4  | 6  |
| 11 | Análisis de Varianza                   | 4  | 9  |
|    | TOTAL DE HORAS TEÓRICAS                | 32 | 0  |
|    | TOTAL DE HORAS PRÁCTICAS               | 0  | 48 |
|    | TOTAL DE HORAS                         | 8  | 30 |

## **CONTENIDO TEMÁTICO**

## 1. INTRODUCCIÓN A LA PROBABILIDAD Y ESTADÍSTICA

- 1.1 Probabilidad.
- 1.2 Estadística Descriptiva e Inferencial.
- 1.3 Inferencias y Deducciones.
- 1.4 Importancia del uso de la Computadora en la Estadística.
- 1.5 Importancia de la Estadística en la Formación Profesional del Ingeniero Químico.

# 2. ESTADÍSTICA DESCRIPTIVA. ORGANIZACIÓN DE DATOS ESTADÍSTICOS

- 2.1. Bloques de Construcción de la Estadística.
  - 2.1.1. Escala Nominal.
  - 2.1.2. Escala Ordinal.
  - 2.1.3. Escala de Intervalo.
  - 2.1.4. Escala de razón.
- 2.2. Organización de Datos Mediante Tablas.
  - 2.2.1. Tablas de frecuencias no agrupadas.
  - 2.2.2. Tablas de frecuencias agrupadas.
  - 2.2.3. Tablas de frecuencias relativas.
  - 2.2.4. Tablas de frecuencias acumuladas.
  - 2.2.5. Tablas bivariadas.
  - 2.2.6. Ejercicios de clasificación y organización de datos mediante tablas de frecuencias, de acuerdo a la naturaleza de los datos estadísticos.
- 2.3. Representación gráfica de datos.
  - 2.3.1. Gráficas de barras y de pastel.
  - 2.3.2. Diagramas de tallo y hojas.
  - 2.3.3. Histogramas.
  - 2.3.4. Histogramas de frecuencias relativas
  - 2.3.5. Gráficas lineales y polígonos de frecuencias.
  - 2.3.6. Histogramas, ojivas y formas de poblaciones
  - 2.3.7. Ejercicios de representación esquemática de los datos estadísticos en diferentes tipos de gráficas.
- 2.4. Medidas descriptivas
  - 2.4.1. Cuartiles.
  - 2.4.2. Deciles.

#### 2.4.3. Percentiles.

### 3. ESTADÍSTICA DESCRIPTIVA. ANÁLISIS DE DATOS UNIVARIADOS

- 3.1. Medidas de tendencia central.
  - 3.1.1. Media,
  - 3.1.2. mediana.
  - 3.1.3. moda.
- 3.2. Medidas de variación.
  - 3.2.1. Desviación estándar.
  - 3.2.2. Varianza.
  - 3.2.3. Coeficiente de variación.
  - 3.2.4. Teorema de Chebyshev.
- 3.3. Medidas de posición relativa.
  - 3.3.1. Sesgo.
  - 3.3.2. Otras medidas de posición relativa.
- 3.4. Métodos para detectar datos fuera de intervalo.

#### 4. PROBABILIDAD

- 4.1. La importancia de la probabilidad en la estadística.
- 4.2. Eventos, espacios de muestreo y probabilidad.
- 4.3. Asignación de probabilidades a eventos. Histogramas de probabilidad. Posibilidades matemáticas.
- 4.4. Eventos compuestos.
- 4.5. Eventos complementarios.
- 4.6. Conteo. Teorema fundamental del conteo. Permutaciones y combinaciones. Triángulo de Pascal.
- 4.7. Probabilidad condicional.
- 4.8. Reglas de probabilidad para uniones e intersecciones.
- 4.9. Teorema de Bayes.
- 4.10. Reglas de enumeración de puntos muestrales.
  - 4.10.1. Ejercicios de construcción de histogramas de probabilidad.
  - 4.10.2. Ejercicios de conteo de eventos utilizando cálculos de permutaciones y combinaciones.
  - 4.10.3. Ejercicios de cálculo de probabilidad de uniones e intersecciones de varias poblaciones.
  - 4.10.4. Ejercicios de enumeración de puntos muestrales.

### 5. VARIABLES ALEATORIAS Y FUNCIÓN DE PROBABILIDAD

- 5.1. Definición de variable aleatoria.
  - 5.1.1. Variables aleatorias discretas.
  - 5.1.2. Variables aleatorias continuas.
  - 5.1.3. Generación de variables aleatorias.
- 5.2. Definición de funciones de probabilidad y funciones de distribución.
  - 5.2.1. Funciones de distribución discretas. Valor esperado. Pruebas de Bernoulli.
  - 5.2.2. Funciones de distribución continuas. Valor esperado.

- 5.2.3. Definición de funciones de probabilidad conjuntas, discretas y continuas. Sus propiedades básicas.
- 5.3. Definición de funciones de distribución conjuntas, discretas y continuas. Sus propiedades básicas.
- 5.4. Definición de funciones de probabilidad y de distribución marginales.
- 5.5. Definición de funciones de probabilidad y de distribución condicionales.
  - 5.5.1. Utilización de algoritmos de generación de números aleatorios.
  - 5.5.2. Ejercicios de cálculos de probabilidad aplicados a series de datos generados aleatoriamente.
  - 5.5.3. Ejercicios de cálculo de los parámetros de las distribuciones de probabilidad para funciones de distribución discretas y continuas.
- 5.6. Definición de momentos de variable aleatoria para variables multivariadas
  - 5.6.1. Media.
  - 5.6.2. Desviación estándar y varianza.
  - 5.6.3. Coeficiente de variación.
- 5.7. Definición de función generatriz de momentos y sus propiedades básicas.
- 5.8. Definición de variables aleatorias independientes.
- 5.9. Función generatriz de momentos para variables aleatorias independientes.
- 5.10. Covarianza.
- 5.11. Media y varianza de la suma de dos variables aleatorias independientes.
  - 5.11.1. Ejercicios del cálculo de los momentos de distribuciones de variable aleatoria.
  - 5.11.2. Ejercicios de cálculo de la covarianza entre dos poblaciones de variable aleatoria independientes.
  - 5.11.3. Ejercicios de cálculo de la media y varianza de la suma de dos variables aleatorias independientes.

## 6. DISTRIBUCIONES DE PROBABILIDAD MÁS COMUNES

- 6.1. Distribución binomial.
  - 6.1.1. Media y varianza para la variable aleatoria binomial.
  - 6.1.2. Toma de decisiones: condiciones de muestreo para aceptación de lotes.
  - 6.1.3. Selección de la hipótesis nula.
  - 6.1.4. Prueba de hipótesis.
- 6.2. Distribución normal.
  - 6.2.1. Tablas para las áreas de la distribución de probabilidad normal.
  - 6.2.2. Teorema del límite central.
  - 6.2.3. Aproximación normal a la distribución binomial.
  - 6.2.4. Ejercicios de cálculo de parámetros estadísticos para distribuciones binomiales y normales.
  - 6.2.5. Ejercicios de prueba de hipótesis para distribuciones binomiales.
  - 6.2.6. Ejercicios de aproximación normal a la distribución binomial.
- 6.3. Otros tipos de distribución de probabilidad para variable aleatoria discreta.
  - 6.3.1. Distribución multinomial.
  - 6.3.2. Distribución binomial negativa y geométrica.
  - 6.3.3. Distribución hipergeométrica.
  - 6.3.4. Distribución de Poisson.

- 6.4. Otros tipos de distribuciones de probabilidad para variable aleatoria continua.
  - 6.4.1. Distribución de probabilidad uniforme.
  - 6.4.2. Distribución gamma.
  - 6.4.3. Distribución beta.
  - 6.4.4. Distribución exponencial.
  - 6.4.5. Ejercicios de determinación de parámetros estadísticos para distribuciones discretas de probabilidad tipo: multinomial, geométrica, hipergeométrica y de Poisson.
  - 6.4.6. Ejercicios de determinación de parámetros estadísticos para distribuciones de probabilidad tipo: uniforme, gamma, beta y exponencial.

### 7. INFERENCIA ESTADÍSTICA

- 7.1.1. Definición de inferencia estadística.
- 7.1.2. Tipos de estimadores.
- 7.1.3. Estimación puntual de la media de una población.
- 7.1.4. Estimación por intervalos de la media de una población. El método de pivote.
- 7.2. Estimación para muestras grandes.
  - 7.2.1. Estimación de la diferencia entre dos medias.
  - 7.2.2. Estimación del parámetro de una población binomial.
  - 7.2.3. Estimación de la diferencia entre dos parámetros binomiales.
- 7.3. Elección del tamaño de la muestra para muestras grandes.
  - 7.3.1. Ejercicios de estimación de la media de una población.
  - 7.3.2. Ejercicios de estimación de la diferencia entre dos medias para poblaciones grandes.
  - 7.3.3. Ejercicios de estimación del parámetro de una población binomial para muestras grandes.
  - 7.3.4. Ejercicios de estimación de la diferencia entre dos parámetros binomiales para muestras grandes.
- 7.4. Inferencia estadística para muestras pequeñas.
  - 7.4.1. Distribución ji cuadrada.
  - 7.4.2. Distribución t de Student.
  - 7.4.3. Inferencias respecto a la media de una población para muestras pequeñas.
  - 7.4.4. Estimación de la diferencia entre las medias de dos poblaciones. Muestras independientes.
  - 7.4.5. Estimación de la diferencia entre las medias de dos poblaciones. Pares coincidentes.
- 7.5. Inferencias respecto a la varianza de una población.
  - 7.5.1. Comparación de la varianza de dos poblaciones.
  - 7.5.2. Ejercicios de inferencia estadística para muestras pequeñas.

#### 8. PRUEBA DE HIPÓTESIS

- 8.1. Relación entre pruebas estadísticas de hipótesis e intervalos de confianza.
- 8.2. Elementos de una prueba estadística de hipótesis.

- 8.3. Evaluación de las propiedades de una prueba estadística.
- 8.4. Obtención de pruebas estadísticas.
- 8.5. Elección de la hipótesis nula y alternativa.
- 8.6. Prueba de la media de una población.
- 8.7. Nivel de significancia observado en una prueba.
- 8.8. Prueba de diferencia entre las medias de dos poblaciones de muestras independientes.
- 8.9. Prueba de diferencia entre las medias de dos poblaciones de pares coincidentes.
- 8.10. Prueba de la proporción de una población.
- 8.11. Prueba de la diferencia entre las proporciones de dos poblaciones.
- 8.12. Prueba de la varianza de una población.
- 8.13. Prueba de la razón de las varianzas de dos poblaciones.
- 8.14. Pruebas de bondad de ajuste ji cuadrada.

## 9. REGRESIÓN LINEAL SIMPLE, CORRELACIÓN Y REGRESIÓN NO LINEAL

- 9.1. Un modelo probabilístico lineal simple.
- 9.2. Estimación de la pendiente y ordenada al origen. Método de minimización del cuadrado de la desviación.
- 9.3. Cálculo de la varianza. Un estimador de la varianza.
- 9.4. Inferencias respecto a la pendiente de la recta de regresión.
- 9.5. Coeficiente de correlación.
- 9.6. Empleo del modelo lineal para estimar y predecir.
- 9.7. Regresión cuadrática.
- 9.8. Regresión cúbica.
- 9.9. Regresión polinomial.
  - 9.9.1. Ejercicios de regresión lineal con funciones unidependientes.
  - 9.9.2. Ejercicios de ajuste no lineal con funciones unidependientes.

#### 10. REGRESIÓN LINEAL MÚLTIPLE

- 10.1. Modelos lineales generales.
- 10.2. Hipótesis del modelo.
- 10.3. Ajuste del modelo. Método de mínimos cuadrados.
- 10.4. Las ecuaciones de mínimos cuadrados y su resolución.
- 10.5. Propiedades de los estimadores de mínimos cuadrados, pendientes y ordenada al origen.
- 10.6. Intervalos de confianza.
- 10.7. Verificación de la hipótesis. Análisis de residuales.
- 10.8. Interpolación y extrapolación.

#### 11. ANÁLISIS DE VARIANZA

- 11.1. Introducción.
- 11.2. Diseño de experimentos. Terminología.
- 11.3. Diseños que reducen el ruido.
- 11.4. Diseños que aumentan el volumen.
- 11.5. Selección del tamaño de muestra.
- 11.6. Justificación de un análisis de varianza.

- 11.7. Tabla de análisis de varianza para un diseño completamente aleatorizado.
- 11.8. Estimación para el diseño completamente aleatorizado.
- 11.9. Algoritmo para el anova de un diseño completamente aleatorizado.
- 11.10. Estimación en el diseño de bloques aleatorizados.
- 11.11. Algoritmo para el anova para el diseño de blogues aleatorizado.
- 11.12. Estimación para el diseño en cuadro latino.
- 11.13. Algoritmo para un diseño en cuadro latino.
- 11.14. Análisis de varianza para experimentos multifactoriales.
- 11.15. Algoritmo para el anova de experimentos multifactoriales.
- 11.16. Anova para una clasificación de datos k-direccional.
- 11.17. Procedimientos para realizar comparaciones múltiples de medias de tratamiento
- 11.18. Verificación de las hipótesis del anova.

## **ACTIVIDADES PRÁCTICAS:**

Durante las sesiones prácticas se realizará la resolución de problemas que se relacionen con las unidades temáticas descritas; estas actividades deberán reflejar el número de horas prácticas señaladas en este programa. Estas actividades deberán ser consideradas en la evaluación final de la asignatura.

## **BIBLIOGRAFÍA**

#### **BIBLIOGRAFÍA BÁSICA:**

- Aguilar, M. A., Altamira I. J., García L. O. Introducción a la inferencia estadística. Editorial Pearson. México. 2010.
- Carrascal, A. U. Estadística descriptiva con Microsoft Excel 2007. Editorial Alfaomega. 2007.
- Devore, L. J. Probabilidad y Estadística para ingeniería y ciencias. México. Editorial Thomson. 2005.
- Hines, W. W. Probabilidad y Estadística para ingeniería. Patria Cultural Continental. México. 2005.
- Mendenhall, W. Introducción a la probabilidad y estadística. Thomson. México. 2008.
- Montgomery, C. D., Runger, C. G. Probabilidad y estadística aplicadas a la ingeniería. Limusa Wiley. México. 2006.
- Navidi, W. Estadística para ingenieros. Mc Graw Hill Interamericana. México. 2006.

#### **BIBLIOGRAFÍA COMPLEMENTARIA**

- López, P. A. Probabilidad y Estadística. Prentice Hall. Colombia. 2000.
- Wackerly, D. D. Estadística Matemática con aplicaciones. Thomson. México. 2002.

• Weimer, R. C. Estadística. CECSA. México. 2001.

## **CIBERGRAFÍA**

- http://www.minitab.com
- http://www.spss.com
- <a href="http://www.emagister.com/cursos-gratis/probabilidad-estadistica-tps-1276439.htm">http://www.emagister.com/cursos-gratis/probabilidad-estadistica-tps-1276439.htm</a>

# SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

| SUGERENCIAS DIDÁCTICAS                                      | UTILIZACIÓN<br>EN EL CURSO |
|-------------------------------------------------------------|----------------------------|
| Exposición oral                                             | X                          |
| Exposición audiovisual                                      |                            |
| Actividades prácticas dentro de clase                       | X                          |
| Ejercicios fuera del aula                                   | X                          |
| Seminarios                                                  |                            |
| Lecturas obligatorias                                       |                            |
| Trabajo de investigación                                    |                            |
| Prácticas de Taller                                         | X                          |
| Taller de resolución de problemas asistidos por el profesor | X                          |
| Otras                                                       |                            |

## MECANISMOS DE EVALUACIÓN.

| ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO<br>ENSEÑANZA-APRENDIZAJE | UTILIZACIÓN EN EL<br>CURSO |
|-----------------------------------------------------------------------|----------------------------|
| Exámenes parciales                                                    | Х                          |
| Examen final                                                          | X                          |
| Trabajos y tareas fuera del aula                                      | X                          |
| Exposición de seminarios por los alumnos.                             |                            |
| Participación en clase                                                | X                          |
| Taller de resolución de problemas asistidos por el profesor           | X                          |
| Asistencia                                                            |                            |

| PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA |               |                    |               |
|--------------------------------------------------------------|---------------|--------------------|---------------|
| LICENCIATURA                                                 | POSGRADO      | ÁREA INDISPENSABLE | ÁREA DESEABLE |
| Ingeniería                                                   | Ingeniería ó, | Matemáticas ó,     | Diseño de     |
| Química ó,                                                   | Matemáticas   | Física ó,          | experimentos  |
| Física ó,                                                    |               | Ingeniería         |               |
| Matemáticas                                                  |               |                    |               |
| Con experiencia docente                                      |               |                    |               |