

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA

PROGRAMA DE LA ASIGNATURA DE:					
TERMODINÁMICA BÁSICA					
IDENTIFICA	ACIÓN DE LA AS	IGNATURA			
MODALIDAD: Curso)				
TIPO DE ASIGNATURA: Teórica					
SEMESTRE EN QUE SE IMPAR	TE: Primero				
CARÁCTER DE LA ASIGNATURA: Obligatoria					
NÚMERO DE CRÉDITOS: 8					
HORAS A LA SEMANA: 4 Teóricas: 4	Prácticas: 0	Semanas de clase:	TOTAL DE 64 HORAS:		
SERIACIÓN: Si (X) No	() Obligato	oria(X)	Indicativa ()		
SERIACIÓNANTECEDENTE: Ninguna					
SERIACIÓN SUBSECUENTE: Equilibrio Químico					

OBJETIVO GENERAL:

Al finalizar el curso el alumno deberá ser capaz de:

Utilizar modelos de estado y las leyes de la termodinámica clásica para realizar balances de energía y entropía en diferentes sistemas que sufren variaciones espontáneas de estado, siguiendo diferentes trayectorias termodinámicas, y a partir de dichos balances, evaluar el flujo de calor, la producción de trabajo, la espontaneidad y la reversibilidad de los procesos. Calculando, además en el caso particular de los ciclos de potencia y refrigeración, la eficiencia térmica del proceso.

ÍNDICE TEMÁTICO				
UNIDAD	TEMAS	Horas Teóricas	Horas prácticas	
1	Fundamentos	4	0	
2	El Comportamiento de la Materia	14	0	
3	Primera ley de la termodinámica	18	0	
4	Segunda y tercera leyes de la termodinámica	18	0	
5	Ciclos de potencia y refrigeración	10	0	
	TOTAL DE HORAS TEÓRICAS	64	0	
	TOTAL DE HORAS PRÁCTICAS	0	0	
	TOTAL DE HORAS	64		

CONTENIDO TEMÁTICO

1. FUNDAMENTOS

- 1.1. El problema fundamental de la termodinámica
- 1.2. El lenguaje de la termodinámica
- 1.3. Definiciones: Sistemas, paredes, estado, trayectoria

2. EL COMPORTAMIENTO DE LA MATERIA

- 2.1. Estados de la materia y modelos de estado.
 - 2.1.1. Variables que caracterizan el estado de un sistema.
 - 2.1.1.1. Variables intensivas y extensivas.
 - 2.1.1.2. Variables primitivas y derivadas.
 - 2.1.2. La ley cero de la termodinámica.
 - 2.1.3. Gases puros.
 - 2.1.3.1. Elementos de la Teoría Cinético Molecular de los gases.
 - 2.1.3.2. Relaciones entre P, V y T.
 - 2.1.3.3. Funciones de respuesta.
 - 2.1.3.4. Ecuación de estado de los gases ideales.
 - 2.1.3.5. Factor de compresibilidad. Ecuaciones de estado de gases reales.
 - 2.1.3.6. Modelo de van der Waals y ecuaciones de estado tipo van der Waals.
 - 2.1.3.7. Teoría de los estados correspondientes
 - 2.1.3.8. Método de las correlaciones generalizadas de Pitzer
 - 2.1.4 Mezclas gaseosas
 - 2.1.4.1 Mezcla de gases ideales. Presión parcial
 - 2.1.4.2 Mezcla de gases reales.
 - 2.1.4.3 Reglas de mezclado
 - 2.1.5 Líquidos y sólidos puros

3 PRIMERA LEY DE LA TERMODINÁMICA

- 3.1 La energía: propiedades y manifestaciones.
- 3.2 Energía interna.
- 3.3 Trabaio.
 - 3.3.1 Tipos de trabajo.
 - 3.3.2 El trabajo termodinámico en los procesos reversibles e irreversibles.
- 3.4 Calor.
 - 3.4.1 Conceptos de calor y temperatura.
 - 3.4.2 Experimento de Joule. Equivalente mecánico del calor
- 3.5 Funciones de estado y de trayectoria.
 - 3.5.1 Definiciones.
 - 3.5.2 Propiedades matemáticas.
- 3.6 La primera ley de la termodinámica para sistemas cerrados.
 - 3.6.1 Balance de energía.

- 3.6.2 Aplicaciones de la primera ley de la termodinámica al cálculo del cambio de energía interna, calor y trabajo en sistemas cerrados para procesos
 - 3.6.2.1 Isotérmicos
 - 3.6.2.2 Isobáricos
 - 3.6.2.3 Isocóricos
 - 3.6.2.4 Adiabáticos
 - 3.6.2.5 Politrópicos
- 3.6.3 El calor en los procesos isocóricos, definición de Cv.
- 3.6.4 El calor en los procesos isobáricos, definición de Cp.
- 3.6.5 Definición de entalpía.
- 3.7 Aplicaciones de la primera ley en sistemas abiertos.
 - 3.7.1 Balance de materia.
 - 3.7.1.1 Entradas, salidas, acumulación, flujo másico, flujo volumétrico, etc.
 - 3.7.1.2 Diferencias entre estados estacionarios y transitorios.
 - 3.7.1.3 La regla de la palanca.
 - 3.7.2 Balances combinados de materia y energía.
 - 3.7.2.1 Turbinas y Compresores
 - 3.7.2.2 Calderas e intercambiadores de calor.
 - 3.7.2.3 Toberas y difusores.
- 3.8 Aplicaciones de la primera ley a sistemas reactantes. Termoquímica.
 - 3.8.1 Ley de Hess; entalpías de formación; otras entalpías de reacción.
 - 3.8.2 Efecto de la temperatura. Ecuación de Kirchhoff.
 - 3.8.3 Calorimetría

4 SEGUNDA Y TERCERA LEYES DE LA TERMODINÁMICA

- 4.1 Limitaciones de la primera ley de la termodinámica.
- 4.2 Procesos espontáneos y no espontáneos.
- 4.3 Interpretación mecánica de la entropía.
 - 4.3.1 El ciclo de Carnot
 - 4.3.2 Desigualdad de Clausius. Definición de entropía.
 - 4.3.3 Escala termodinámica de temperatura. Temperaturas absolutas.
- 4.4 Interpretación estadística de la entropía.
- 4.5 Balance de entropía.
- 4.6 Entropía en sistemas cerrados.
 - 4.6.1 Cálculo del cambio de entropía en procesos isotérmicos, isobáricos, isocoros, adiabáticos y en transiciones de fase.
 - 4.6.2 Cálculo del cambio de entropía en reacciones guímicas.
 - 4.6.3 La tercera ley de la termodinámica. Cálculo de entropías absolutas.
- 4.7 Entropía en sistemas abiertos.
 - 4.7.1 Turbinas y compresores.
 - 4.7.2 Calderas e intercambiadores de calor.
 - 4.7.3 Toberas y difusores.

5 CICLOS DE POTENCIA Y REFRIGERACIÓN

- 5.1 Cálculo de la eficiencia térmica en ciclos de potencia.
- 5.2 Ciclo de Carnot. Diagramas PV y TS
- 5.3 Ciclo Rankine y sus variantes.
- 5.4 Ciclos de combustión interna.
 - 5.4.1 Otto.
 - 5.4.2 Diesel.
- 5.5 Ciclos de refrigeración.
 - 5.5.1 Coeficiente de rendimiento.
 - 5.5.2 Refrigeración por compresión.
 - 5.5.3 Ciclo de Carnot inverso. Diagramas P-V y T-S.
 - 5.5.4 Ciclo de Rankine inverso. Diagrama P-H.
 - 5.5.5 Refrigeración por absorción.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA:

- Castellan, W. G. Fisicoquímica. Addison Wessley. México. 2006.
- Engel, T., Reid, P. Introducción a La Fisicoquímica: Termodinámica. Prentice Hall. México. 2007.
- Chang, R. Fisicoquímica. McGraw Hill. México. 2008.
- Levine, I. N. Fisicoquímica. Volumen 1. 5ª ed. McGraw-Hill. España. 2004.
- Ball, D. W. Fisicoquímica. International Thompson Editores. México. 2004.
- Smith, J. M., Van Ness, H. C., Abbott, M. M. Introducción a La Termodinámica en Ingeniería Química. 7ª ed. McGraw-Hill. México 2007.
- Atkins, P., De Paula, J. Physical Chemistry. 9th ed. W. H. Freeman and Co. USA. 2009.

BIBLIOGRAFÍA COMPLEMENTARIA

- Elliot, J. R., Lira, C. T. Introductory Chemical Engineering Thermodynamics. 2nd ed. Prentice-Hall. Pearson Education. New York. 2012.
- Ahuja, P. Chemical Engineering Thermodynamics. PHI Learning Private. New Delhi. 2009.
- Narayanan, K. V. A Textbook of Chemical Engineering Thermodynamics. Prentice-Hall of India. New Delhi. 2006.
- Koretsky, M. D. Engineering and Chemical Thermodynamics. Wiley. USA 2004.
- Balzhiser, R.E., Samuel, M.R., Eliassen J.D. Termodinámica Química para Ingenieros. Prentice-Hall International. New Jersey, U.S.A. 1974.
- Prausnitz, J.M., Gómez de Acevedo, E., Lichtenthaler, R. N. Termodinámica Molecular de los Equilibrios de Fases. Prentice-Hall. U.S.A. 2000.

CIBERGRAFÍA

http://www.cie.unam.mx/~ojs/pub/Termodinamica/node21.html

http://www2.udec.cl/~jinzunza/fisica/cap15.pdf

SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDÁCTICAS	UTILIZACIÓN EN EL CURSO
Exposición oral	X
Exposición audiovisual	X
Actividades prácticas dentro de clase	X
Ejercicios fuera del aula (y dentro del aula)	X
Seminarios	
Lecturas obligatorias	
Trabajo de investigación	
Prácticas de Taller	
Otras:	

MECANISMOS DE EVALUACIÓN.

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	UTILIZACIÓN EN EL CURSO
Exámenes parciales	X
Examen final	X
Trabajos y tareas fuera del aula	X
Exposición de seminarios por los alumnos.	
Participación en clase	
Resolución de problemas y ejercicios en clase	X
Asistencia	

PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA					
LICENCIATURA	POSGRADO	ÁREA INDISPENSABLE	ÁREA DESEABLE		
Ingeniería		Fisicoquímica	Termodinámica		
Química ó		·			
Química Industrial					
ó Química					
Con experiencia docente					