

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA

PROGRAMA DE LA ASIGNATURA DE:							
Transformadores y Motores de Inducción							
IDENTIFICACIÓN DE LA ASIGNATURA							
MODALIDAD: Curs	so C	LAVE: 1624					
TIPO DE ASIGNATURA: Teórico - Práctica							
SEMESTRE EN QUE SE IMPARTE: Sexto							
CARÁCTER DE LA ASIGNATURA: Obligatoria							
NÚMERO DE CRÉDITOS: 10							
HORAS DE CLASE A LA 6 SEMANA:	Teóricas: 4	Prácticas:	2	Semanas de clase:	16	TOTAL DE HORAS:	96
SERIACIÓN OBLIGATORIA ANTECEDENTE: Análisis de Circuitos Eléctricos							
SERIACIÓN INDIC	ATIVA SUBSE	CUENTE:		/láquinas de /láquinas Sí			cta y

OBJETIVO GENERAL

Al finalizar el curso el alumno tendrá las técnicas del análisis del comportamiento así como su selección y aplicación en los transformadores y motores de inducción.

ÍNDICE TEMÁTICO				
UNIDAD	TEMAS	Horas Teóricas	Horas Prácticas	
1	Fundamentos de electromagnetismo	10	0	
2	Fundamentos del transformador	12	4	
3	El transformador real	10	8	
4	Máquinas asíncronas trifásicas	12	8	
5	Máquinas asíncronas monofásicas	10	8	
6	Motores especiales	10	4	
	Total de Horas	64	32	
	Suma Total de las Horas	96		

CONTENIDO TEMÁTICO

1. FUNDAMENTOS DE ELECTROMAGNETISMO

- 1.1. Fundamentos de materiales magnéticos.
- 1.2. Leves del circuito magnético.
- 1.3. Imanes permanentes.
- 1.4. Circuitos magnéticos excitados con corriente alterna.
 - 1.4.1. Curva de magnetización.
- 1.5. Saturación.
 - 1.5.1. Área de histéresis.
 - 1.5.2. Energía magnética almacenada.
- 1.6. Excitación de núcleos ferromagnéticos (sin y con entrehierro) con corrientes parasitas.
- 1.7. Reactor con núcleo ferromagnético.
- 1.8. Circuito equivalente.
- 1.9. Ley de Faraday.
- 1.10. Fuerza Electromotriz inducida (FEM), dirección, regla de Fleming. Ley deLenz.

2. FUNDAMENTOS DEL TRANSFORMADOR

- 2.1. Características constructivas del transformador ideal.
- 2.2. Teoría del transformador ideal.
- 2.3. Funcionamiento de un transformador real.
- 2.4. Circuito equivalente.
- 2.5. Prueba de corto circuito abierto y corto circuito.
- 2.6. Estudio del transformador en condiciones de carga.
- 2.7. Pérdidas y rendimiento.
- 2.8. Impedancia en por ciento y por unidad, significado y aplicación de estos parámetros.

3. EL TRANSFORMADOR REAL

- 3.1. Características constructivas de un transformador de potencia.
- 3.2. Transformadores trifásicos.
 - 3.2.1. Conexiones de los transformadores trifásicos.
 - 3.2.2. Acoplamiento de los transformadores.
- 3.3. Conexiones serie-serie, serie-paralelo, paralelo-serie y paralelo-paralelo.
- 3.4. Autotransformadores.
- 3.5. Transformadores de medida.
- 3.6. Pruebas de; polaridad, resistencia ohmíca, resistencia de aislamiento relación de transformación, secuencia de fases y desplazamiento angular.
- 3.7. Diseño de un transformador monofásico.
- 3.8. diseño de un transformador trifásico.
- 3.9. diseño de transformadores con devanados múltiples.

4. MÁQUINAS ASÍNCRONAS TRIFÁSICAS

- 4.1. El generador elemental, polaridad.
- 4.2. FEM generada en un movimiento circular con velocidad constante.
- 4.3. FEM generada en un cuarto de revolución, fuerza electromagnética.
- 4.4. Dirección de la fuerza electromagnética y regla de la mano izquierda.
- 4.5. Fuerza contraelectromotriz
- 4.6. Diferencias entre la acción motor, acción generador.
- 4.7. Estructura del motor asíncrono trifásico.
- 4.8. Armadura, campo giratorio y velocidad síncrona.
- 4.9. Inducción en el rotor, Analogía con el transformador.
- 4.10. Deslizamiento y velocidad real. Circuito equivalente.
- 4.11. Análisis del circuito equivalente bajo diferentes condiciones de carga.
- 4.12. Tipos de embobinados de rotor
- 4.13. Curvas mecánica y electromecánica
- 4.14. Motores asíncronos trifásicos de alta eficiencia
- 4.15. Regulación de velocidad.
- 4.16. El generador asíncrono
- 4.17. Normas, clasificación y especificaciones.

5. MÁQUINAS ASÍNCRONAS MONOFÁSICAS

- 5.1. Clasificación de los motores monofásicos
- 5.2. Motor de fase partida, características constructivas, principio de funcionamiento.
- 5.3. Motor con capacitor de arranque características constructivas y principio de funcionamiento.
- 5.4. Motor de capacitor en marcha características constructivas y principio de Funcionamiento.
- 5.5. Motor de repulsión características constructivas y principio de Funcionamiento.

6. MOTORES ESPECIALES

- 6.1. Motor universal características constructivas y principio de funcionamiento.
- 6.2. Motor de paso características constructivas y principio de funcionamiento.
- 6.3. Servomotor características constructivas y principio de funcionamiento.
- 6.4. Micromotores características constructivas y principio de funcionamiento.
- 6.5. Motor lineal.

Prácticas

- 1. Resistencia óhmica, relación de transformación.
- 2. Polaridad, conexiones en paralelo.
- 3. Circuito Abierto y cortocircuito.
- 4. Desplazamiento angular.
- 5. El transformador con carga.
- 6. Motor de inducción jaula de ardilla.
- 7. Motor de Inducción de rotor devanado.
- 8. Motor monofásico de fase partida.
- 9. Motor monofásico con capacitor de arranque.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- Stephen J. Chapman, *Máquinas eléctricas* 6a. edición, Mc. Graw Hill. 2007.
- Bhag S. Guru y Hüseyin R Hiziroglu, Máquinas eléctricas y transformadores, Oxford University press, 2008
- E.E. STAF, Circuitos Magnéticos y Transformadores, Reverte; 2003.
- Gilberto Enríquez Harper, *Curso de Transformadores y Motores de inducción*, 4ª edición, Noriega, 2000.
- Irving L. Kosow, *Máquinas Eléctricas y Transformadores*, 2ª edición, Pearson, 2000.
- Colonel Wm. T. Mc Lyman, *Transformer and inductor design handbook*, trird edition, CRC press, 2004
- Jesús Fraile Mora; Máquinas Eléctricas, 6ª edición, ed. Mc. Graw Hill; 2008

BIBLIOGRAFIA COMPLEMENTARIA.

- *Theodore Wild,* Máquinas eléctricas y sistemas de potencia, i, Pearson-Prentice Hall, sexta edición, 2007.
- Rafael Guirado Torres, Tecnología Eléctrica, 1e edición, , Mc Graw Hill
 .2006
- Pedro Avelino Pérez; Transformadores de distribución, 2ª edición, ed. Reverte; 2001
- Ponce, Pedro; Sampé, Javier; Máquinas Eléctricas y Técnicas de control, ed. ALFAOMEGA; 2008.
- Hamild A. Toliyat, Handbook of electrics Motors, second, 2004, CRC

SITIOS WEB RECOMENDADOS

- http://www.dqbiblio.unam.mx (librunam, tesiunam, bases de datos digitales)
- http://www.copernic.com

SUGERENCIAS DIDACTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDACTICAS	UTILIZACIÓN EN EL CURSO
Exposición oral	
Exposición audiovisual	
Ejercicios dentro de clase	
Ejercicios fuera del aula	
Lecturas obligatorias	
Trabajo de investigación	
Practicas de taller	
Practicas de campo	
Otras	

MECANISMOS DE EVALUACIÓN

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	UTILIZACIÓN EN EL CURSO
Exámenes parciales	$\sqrt{}$
Examen final	V
Trabajos y tareas fuera del aula	$\sqrt{}$
Participación en clase	$\sqrt{}$
Asistencia	$\sqrt{}$
Exposición de seminarios por los alumnos	$\sqrt{}$

PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA				
LICENCIATURA	POSGRADO	ÁREA INDISPENSABLE	ÁREA DESEABLE	
Ingeniería Mecánica y eléctrica, o ingeniería eléctrica	Maestría en ingeniería eléctrica	Eléctrica	Eléctrica	