

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

Carrera: Licenciatura en Tecnología

Programa de la Asignatura: QUÍMICA INORGÁNICA

Clave: No. de créditos: 10 Semestre: 1º

DURACIÓN DEL CURSO:

Semanas: 16

Horas a la semana: 6 (Teoría: 4, Prácticas: 2 de Laboratorio)

Horas totales al semestre: 96 (Teoría: 64, Prácticas: 32)

Carácter de la asignatura: Obligatorio.

Modalidad: Curso.

Tipo de asignatura:Teórico-Práctico.Tronco de desarrollo:Tronco común.

Área de conocimiento: Química.

OBJETIVO.

Presentar al alumno conceptos de química inorgánica.

REQUISITOS.

El alumno debe tener conocimientos de Química a nivel bachillerato.

ASIGNATURAS ANTECEDENTES SUGERIDAS:

Ninguna.

ALCANCE.

El alumno deberá describir la materia desde el punto de vista estructural y de reactividad química. Debe entender la periodicidad química (propiedades físicas y químicas de los elementos) como función de la estructura atómica de los elementos químicos y el comportamiento de sustancias inorgánicas comunes.

ASIGNATURAS CONSECUENTES SUGERIDAS:

Química Orgánica.

TÉCNICAS DE ENSEÑANZA SUGERIDAS:

Exposición oral (x)
Exposición audiovisual (x)
Ejercicios dentro de clase (x)
Ejercicios fuera del aula (x)
Lecturas obligatorias (x)
Prácticas de taller o laboratorio (x)

TÉCNICAS DE EVALUACIÓN SUGERIDAS:

Exámenes parciales(x)Examen final(x)Trabajos y tareas fuera del aula(x)Prácticas de Laboratorio(x)Participación en clase(x)

PERFIL PROFESIOGRÁFICO DE QUIENES PUEDEN IMPARTIR LA ASIGNATURA:

Profesor con estudios de posgrado (maestría o doctorado) en ciencias o áreas afines con una fuerte preparación en Química.

TEMAS:		# HORAS
I	Fundamentos. La tabla periódica.	6
II	Interacciones químicas.	8
III	Termodinámica inorgánica.	6
IV	Ácidos y bases.	8
V	Oxidación y Reducción.	6
VI	Hidrógeno.	6
VII	Soluciones.	6
VIII	Bloques.	18
	Т	Total horas 64

REFERENCIAS DEL CURSO.

Raymond Chang.

Química.

McGraw-Hill (2000).

Strozak Wistrom Phillips.

Química, conceptos y aplicaciones.

McGraw-Hill (1998).

May Brown-Le.

Química.

Prentice Hall (1996).

Bibliografía Complementaria:

M. Sienko, & R.A. Plane.

Química.

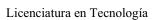
Editorial Aguilar (2001).

J.C. Kotz, & Purcell.

Chemistry and Chemical Reactivity.

Saunders Publishing (1999).

G. Rayner-Canham.


Química Inorgánica Descriptiva.

Pearson Educación. México (2000).

G. Wulfsberg.

Principles of Descriptive Inorganic Chemistry.

University Science Books. Mill Valley, Ca. (1991).

CONTENIDO DE LOS TEMAS DEL CURSO.

Unidad	Тета	Horas Clase
I	 La Tabla Periódica. Origen estelar de los elementos. Propiedades periódicas de los átomos enlazados: 	6
	electronegatividad y radios (covalente, iónico, metálico y de Van der Waals).	
II	Interacciones Químicas.	8
	 Enlace covalente. Modelo de repulsión de pares electrónicos de la capa de valencia (RPECV). Teoría de enlace valencia. Materiales moleculares y Redes covalentes. Enlace Metálico. Redes metálicas. Enlace Iónico. Redes iónicas. Fuerzas intermoleculares. 	
III	 Termodinámica Inorgánica. Energías de enlace y energías de red Ciclo de Born-Haber. 	6
IV	 Ácidos y bases. Relación entre propiedades periódicas y comportamiento ácido-base. Reacciones de hidrólisis. Ácidos y bases, duros y blandos. 	8
V	Oxidación y Reducción. • Relación entre propiedades periódicas y comportamiento redox.	6
VI	Hidrógeno. • Hidrógeno elemental. • Hidruros iónicos, covalentes y metálicos.	6
VII	Soluciones.	6

CFATA y FESC, UNAM

Unidad	Тета	Horas Clase
VIII	Bloques.	18
	El Bloque "S"	
	 Características comunes de los compuestos de los 	
	metales alcalinos y alcalino-térreos.	
	 Importancia industrial. 	
	 Aspectos biológicos. 	
	El Bloque "P"	
	o El grupo 13.	
	o El grupo 14.	
	o El grupo 15.	
	o El grupo 16.	
	o El grupo 17.	
	o El grupo 18.	
	El Bloque "D"	
	 Introducción a los compuestos de coordinación 	
	(ligantes, nomenclatura, estereoquímica, propiedades	
	físicas).	
	 Rudimentos de teorías de enlace para los compuestos 	
	de coordinación (Teoría de unión valencia, Teoría de	
	campo cristalino).	
	 Estabilidad en compuestos de coordinación. 	
	o Formas naturales de los metales de transición	
	o Importancia industrial.	
	 Aspectos biológicos. 	
	• El Bloque "F"	
	 Propiedades de los lantanoides, actinoides y postactinoides. 	

PRÁCTICAS DE LABORATORIO SUGERIDAS

Tema	Horas de L	aboratorio
I	Propiedades de metales alcalinos y alcalino-térreos	4
II	Propiedades del aluminio y del Al(OH)3	4
III	Obtención del hidrógeno y análisis de sus propiedades físicas y químicas	4
IV	Obtención de halógenos y análisis de sus propiedades físicas y químicas	4
V	Química del cobre Preparación del complejo Cu(NH3)4SO4H2O e identificación de cationes de metales de transición	4
VI	Reacciones permanganimétricas de óxido-reducción	4
VII	Análisis de agua.	4
VIII	Preparación de pigmentos	4
	Total	32

Se sugiere dar mayor importancia a la realización completa del diseño experimental, que al número de experimentos efectuados. Se busca estimular el ingenio mostrado por el alumno y el trabajo en equipo.