

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

Carrera: Licenciatura en Tecnología

Programa de la Asignatura: Mecánica Teórica

Clave: No. de créditos: 10 Semestre: 6°, 7° u 8°

DURACIÓN DEL CURSO:

Semanas: 16

Horas a la semana: 5 (Teoría: 5, Prácticas: 0) Horas totales al semestre: 80 (Teoría: 80, Prácticas: 0)

Carácter de la asignatura:Optativo.Modalidad:Curso.Tipo de asignatura:Teórico.Tronco de desarrollo:Terminal.Área de conocimiento:Física.

OBJETIVO

Mostrar al alumno las bases formales de la Mecánica Clásica en los esquemas de Newton, de Lagrange y de Hamilton. Mostrar al alumno los principios de conservación de cantidades mecánicas como consecuencia de simetrías de los sistemas estudiados. Ejemplificar las herramientas desarrolladas mediante la solución de problemas fundamentales y de aplicación.

ALCANCE

El alumno comprenderá los formalismos alternos de la mecánica clásica y evaluará sus potencialidades. El alumno empleará las bases desarrolladas para obtener soluciones a problemas complejos, y sus características importantes.

REQUISITOS

El alumno debe tener conocimientos de Mecánica Clásica y de Matemáticas.

ASIGNATURAS ANTECEDENTES SUGERIDAS:

Mecánica Clásica.

ASIGNATURAS CONSECUENTES SUGERIDAS:

Ninguna.

TÉCNICAS DE ENSEÑANZA SUGERIDAS:

Exposición oral	(x)
Exposición audiovisual	(x)
Ejercicios dentro de clase	(x)
Ejercicios fuera del aula	(x)
Lecturas obligatorias	(x)

TÉCNICAS DE EVALUACIÓN SUGERIDAS:

Exámenes parciales	(x)
Examen final	(x)
Trabajos y tareas fuera del aula	(x)
Participación en clase	(x)

PERFIL PROFESIOGRÁFICO DE QUIENES PUEDEN IMPARTIR LA ASIGNATURA:

Profesor con estudios de posgrado (maestría o doctorado) en ciencias o áreas afines con una fuerte preparación en fisica.

Licenciatura en Tecnología

TEMA	4S:	# HORAS	
I	Conceptos básicos.	8	
II	Dinámica de una partícula.	8	
III	Formulación Lagrangiana de la mecánica.	8	
IV	Formulación Hamiltoniana de la mecánica.	8	
V	Fuerzas centrales.	8	
VI	Dinámica de un sistema de partículas.	8	
VII	Cuerpo rígido.	8	
VIII	Vibraciones.	8	
IX	Aplicaciones.	16	
		Total horas 80	

REFERENCIAS DEL CURSO

W. Hauser,

Introduction to the principles of Mechanics, Addison-Wesley, Massachusetts.

G.R. Fowles,

Analytical mechanics, Holt, Rinehart and Winston.

Bibliografía Complementaria

Luis A. Santaló,

Vectores y tensores con sus aplicaciones, Editorial universitaria de Buenos Aires (1970).

Landau & Lifshitz.

Mecánica,

Editorial Reverté, Barcelona, 1986.

CFATA Y FESC, UNAM

CONTENIDO DE LOS TEMAS DEL CURSO

Unidad	Тета	Horas Clase
Ι	Conceptos Básicos	8
	a) Vectores, escalares y las leyes de la física.b) Conceptos de espacio, de tiempo y de marco de referencia.	
	c) Sistemas de referencia.	
	d) Traslación y rotación.	
II	Dinámica de una partícula.	8
	a) Ecuaciones de movimiento.	
	b) Conceptos de partícula, de masa y de fuerza.	
	c) Leyes de Newton.	
	d) Ejemplos de fuerzas.	
	e) Fuerzas inerciales.	
	f) Campos conservativos.	
III	Formulación Lagrangiana de la mecánica.	8
	a) Coordenadas, momentos y fuerzas generalizados.	
	b) Ecuaciones de Lagrange.	
	c) Coordenadas ignorables y simetría.	
	d) Problemas con constricciones.	
	e) Derivación variacional de la mecánica.	
IV	Formulación Hamiltoniana de la mecánica.	8
	a) Coordenadas y momentos generalizados.	
	b) Ecuaciones de Hamilton.	
	c) Espacio fase.	
**	d) Características generales del movimiento en el espacio fase.	0
V	Fuerzas centrales.	8
	a) Movimiento en campos de fuerzas centrales.b) Leyes de Kepler del movimiento planetario.	
	b) Leyes de Kepler del movimiento planetario.c) Órbitas de partículas en campos centrales.	
	d) Dispersión de partículas en campos centrales.	
VI	Dinámica de un sistema de partículas.	8
	a) Centro de masa. Masa reducida.	
	b) Teoremas de conservación.	
	c) Movimientos de cuerpos de masa variable.	
VII	Cuerpo rígido.	8
	a) Mecánica del cuerpo rígido.	
	b) Equilibrio estático de un cuerpo rígido.	
	c) Momentos de inercia.	
	d) Ejes principales de un cuerpo rígido.	
	e) Ecuaciones de movimiento de un cuerpo rígido.	

Licenciatura en Tecnología

	f) Ejemplos. Trompo y giroscopio.	
Unidad	Тета	Horas Clase
VIII	Vibraciones	8
	a) Teoría de vibraciones.	
	b) Oscilador armónico simple.	
	c) Vibraciones anarmónicas.	
	d) Osciladores armónicos acoplados. Modos normales.	
IX	Aplicaciones.	16