

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA Y FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

Carrera: Licenciatura en Tecnología

Programa de la Asignatura:

CÁLCULO II

Clave: No. de créditos: 10 Semestre: 2º

DURACIÓN DEL CURSO:

Semanas: 16

Horas a la semana: 5 (Teoría: 5, Prácticas: 0) Horas totales al semestre: 80 (Teoría: 80, Prácticas: 0)

Carácter de la asignatura: Obligatorio.

Modalidad: Curso.

Tipo de asignatura: Teórico.

Tronco de desarrollo: Común.

Área de conocimiento: Matemáticas.

OBJETIVO

Presentar al alumno el cálculo diferencial e integral de funciones de un vector y varias variables enfatizando la comprensión de los conceptos, la adquisición de habilidades para su operación y el manejo de los esquemas formales en que sustenta. La presentación deberá mostrar el origen de los conceptos presentados y la utilidad de la disciplina para representar diversos modelos de la naturaleza.

REQUISITOS

El alumno debe tener conocimientos de cálculo diferencial e integral de variable real, álgebra lineal y geometría analítica.

ASIGNATURAS ANTECEDENTES SUGERIDAS:

Cálculo I.

Álgebra Lineal y Geometría Analítica.

CFATA y FESC, UNAM

ALCANCE:

El alumno deberá comprender conceptos fundamentales en matemáticas y desarrollar su capacidad para aplicar esta disciplina a la solución de problemas.

ASIGNATURAS CONSECUENTES SUGERIDAS:

Ecuaciones Diferenciales I.

TÉCNICAS DE ENSEÑANZA SUGERIDAS:

Exposición oral (x)
Exposición audiovisual (x)
Ejercicios dentro de clase (x)
Ejercicios fuera del aula (x)

TÉCNICAS DE EVALUACIÓN SUGERIDAS:

Exámenes parciales(x)Examen final(x)Trabajos y tareas fuera del aula(x)Participación en clase(x)

PERFIL PROFESIOGRÁFICO DE QUIENES PUEDEN IMPARTIR LA ASIGNATURA:

Profesor con estudios de posgrado (maestría o doctorado) en ciencias o áreas afines con una fuerte preparación matemática.

TEMAS:		# <i>HO</i> 1	RAS
I	Vectores.		4
II	Funciones vectoriales.		8
III	Derivación de funciones vectoriales de variable real.		12
IV	Derivación funciones reales de un vector.		12
V	Integración múltiple.		12
VI	Fórmulas básicas del cálculo integral.		12
VII	Aplicación del Cálculo de n-variables.		20
		Total horas	80

REFERENCIAS DEL CURSO

N.B. Haaser, J.P. LaSalle, & J.A. Sullivan, *Análisis Matemático 2*, Ed. Trillas, México (1974).

R. Courant, & F. John,

Introducción al Cálculo y al Análisis Matemático, Ed. Limusa, México (1976).

Bibliografía Complementaria

C. Ray Wylie,

Matemáticas superiores para Ingeniería. McGRAW-HILL, México (1982).

R. Courant, H. Robbins, & I. Stewart,

What is Mathematics? An Elementary Approach to Ideas and Methods, 2nd Ed., Dover Publications, New York (1989).

T. Bahder,

Mathematica for Scientists and Engineers, Addison-Wesley (1995).

R. Courant,

Differential and integral calculus, Interscience, New York (1999).

CONTENIDO DE LOS TEMAS DEL CURSO.

Unidad	Tema	Horas clase
I	Vectores.	4
II	Funciones vectoriales.	8
	a) Funciones vectoriales de una variable real.	
	b) Funciones reales de un vector.	
	c) Funciones vectoriales de un vector.	
	d) Límites.	
	e) Continuidad.	
III	Derivación de funciones vectoriales de variable real.	12
	a) Reglas de derivación.	
	b) Tangente a una curva, normal principal y vectores binormales.	
	c) Curvatura y torsión.	
	d) Longitud del arco.	
	e) Aplicaciones físicas.	
IV	Derivación de funciones reales de un vector.	12
	a) Derivadas parciales.	
	b) Derivadas direccionales.	
	c) Derivadas parciales de orden superior.	
	d) El concepto de una ecuación diferencial parcial.	
	e) Plano tangente a una superficie.	
	f) Teorema de la función implícita.	
V	Integración múltiple.	12
	a) Integrales iteradas.	
	b) Área y momentos de regiones planas.	
	c) Volumen bajo una superficie.	
	d) Orden de integración.	
	e) Integrales múltiples.	
VI	Fórmulas básicas del cálculo integral.	12
	a) Integrales de línea.	
	b) Integrales de superficie.	
	c) Teorema de la divergencia.	
	d) Teorema de Stokes.	

Licenciatura en Tecnología

Unidad	Tema	Horas clase
VII	Aplicación del cálculo de n variables.	20
	a) Función de potencial del campo de fuerza.	
	b) Ley de Faraday.	
	c) Ley de Ampere.	
	d) Ley de Gauss para los campos eléctricos.	
	e) Aplicaciones en Biología.	