CAMPO DICIPLINARIO DE UTILIZACIÓN DE LA ENERGÍA ELÉCTRICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA

PROGRAMA DE LA ASIGNATURA DE:							
	Contr	ol y	Monitoreo c	le la	Energía		
	IDENTIFI	CA	CIÓN DE LA	AS	IGNATURA		
MODALIDAD: Curs	so	Cl	LAVE : 1929				
TIPO DE ASIGNAT	「URA: Teóri	co -	- Práctica				
SEMESTRE EN QU	JE SE IMPA	RT	E: Noveno				
CARÁCTER DE LA	A ASIGNATI	UR/	A: Obligatoria	a de	Elección		
NÚMERO DE CRÉ	DITOS: 8						
HORAS DE CLASE A LA 5 SEMANA:	Teóricas:	3	Prácticas:	2	Semanas de clase:	TOTAL DE HORAS:	80
SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna							
SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna							

OBJETIVO GENERAL

Al finalizar el curso el alumno conocerá las variables que están involucradas en la calidad de la energía, así como los dispositivos requeridos para su control y monitoreo que permitan una supervisión de la misma.

ÍNDICE TEMÁTICO						
UNIDAD	TEMAS	Horas Teóricas	Horas Prácticas			
1	Calidad de la Energía Eléctrica	4	0			
2	Variables Eléctricas Involucradas en la Calidad de la Energía	8	4			
3	Dispositivos Generadores de Armónicos	10	4			
4	Dispositivos Relacionados con el Monitoreo, Protección y Control de la Energía	10	16			
5	Estudio del Factor de Potencia	8	4			
6	Unidades de Respaldo	8	4			
	Total de Horas	48	32			
	Suma Total de las Horas	8	30			

CONTENIDO TEMÁTICO

1. CALIDAD DE LA ENERGÍA ELÉCTRICA

- 1.1. Historia de la calidad de la energía eléctrica.
- 1.2. Importancia de la calidad de la energía eléctrica en el suministro de la energía eléctrica.
- 1.3. El consumo de la energía eléctrica por el usuario.
- 1.4. Problemas que se presentan en la calidad de la energía eléctrica.
- 1.5. Inversión para la solución de la calidad de la energía eléctrica.
- 1.6. Beneficios.

2. VARIABLES ELÉCTRICAS INVOLUCRADAS EN LA CALIDAD DE LA ENERGÍA

- 2.1. Variaciones de voltaje.
- 2.2. Oscilaciones de voltaje.
- 2.3. Falla sostenida de voltaje.
- 2.4. Desbalance de voltaje.
- 2.5. Ruido eléctrico.
- 2.6. Armónicos.
- 2.7. Diseño de filtros de potencia.
- 2.8. Variación en la frecuencia.
- 2.9. Descargas atmosféricas.

3. DISPOSITIVOS GENERADORES DE ARMÓNICOS

- 3.1. Transformadores.
- 3.2. Máquinas eléctricas.
- 3.3. Hornos de inducción.
- 3.4. Lámparas fluorescentes.
- 3.5. Variadores de velocidad electrónicos.
- 3.6. Otras cargas eléctricas.

4. DISPOSITIVOS RELACIONADOS CON EL MONITOREO, PROTECCIÓN Y CONTROL DE LA ENERGÍA

- 4.1. Historia de los analizadores de energía.
- 4.2. Clasificación de los analizadores de energía.
- 4.3. Aplicación de los analizadores.
- 4.4. Relevadores de protección.
- 4.5. Filtros.
- 4.6. Protección contra transitorios.
- 4.7. Sistemas de tierras.
- 4.8. Software para adquisición de datos.
- 4.9. Análisis de datos para la administración de la energía.

5. ESTUDIO DEL FACTOR DE POTENCIA

- 5.1. El factor de potencia.
- 5.2. Problemas de un factor de potencia bajo.
- 5.3. Efectos ocasionados por el bajo factor de potencia en la potencia del transformador de potencia.
- 5.4. Localización en el sistema eléctrico de los utilizados en corregir el factor de potencia.
- 5.5. Problemas que pueden originar una sobrecorrección del factor de potencia.

6. UNIDADES DE RESPALDO

- 6.1. Nivel de confiabilidad del sistema eléctrico.
- 6.2. Seleccionar áreas estratégicas que requieren de continuidad de energía eléctrica en caso de una contingencia.
- 6.3. Unidades de respaldo.
- 6.4. Selección de las unidades de respaldo.
- 6.5. El generador eléctrico en la planta de emergencia.
- 6.6. Sensibilidad del sistema.

PRÁCTICAS

- 1.- Características de un sistema eléctrico (variables eléctricas) en condiciones normales.
- 2.- Características de un sistema eléctrico en condiciones anormales.
- 3.- Estudio de armónicos en el sistema eléctrico.
- 4.- Aplicación de los filtros en la red eléctrica.
- 5.- Análisis del factor potencia.
- 6.- Corrección del factor de potencia.
- 7.- Utilización del analizador de energía.
- 8.- Utilización del analizador de energía II (Adquisición de Datos).
- 9.- Unidades de respaldo (UPS).
- 10.- Unidades de Respaldo II (Plantas de Emergencia).

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- Normas técnicas para instalaciones eléctricas, México, NOM-0001-SENER.
 2005
- Gunter G. Seip, *Electrical installations handbook*, México, Siemens, 2006.
- Roldan Viloria, José, *Electricidad y sus aplicaciones*, México, Editorial LIMUSA, 2002.
- Roger C. Dugan, Mark F. Granaghan, *Electrical power systems quality*, México, Editorial Mc Graw Hill, 2002.
- Alexander Kusko, Marc T. Thomson, *Power quality in electrical systems*, México, Editorial Mc Graw Hill, 2007.
- Enríquez Harper, Gilberto, *El ABC de la calidad de la energía*, México, 1ª Ed., Editorial LIMUSA, 2001.
- R. Sastri Vedam, Mulukutla, S. Sarma, *Power Quality*, México, Editorial CRC press, 2009.

BIBLIOGRAFÍA COMPLEMENTARIA

- De la Rosa, Francisco C., *Harmonics and power systems*, México, Editorial CRC press, 2006.
- Shoaib Khan, Industrial power system, México, Editorial, CRC press, 2008.

SITIOS WEB RECOMENDADOS

- http://www.dgbiblio.unam.mx (librunam, tesiunam, bases de datos digitales)
- http://www.copernic.com
- http://www.ieee.org.mx/IEEE Seccion Mexico.html

SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDÁCTICAS	UTILIZACIÓN EN EL CURSO
Exposición oral	✓
Exposición audiovisual	✓
Ejercicios dentro de clase	✓
Ejercicios fuera del aula	✓
Lecturas obligatorias	✓
Trabajo de investigación	✓
Prácticas de taller	✓
Prácticas de campo	✓
Otras	✓

MECANISMOS DE EVALUACIÓN

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	UTILIZACIÓN EN EL CURSO
Exámenes parciales	✓
Examen final	✓
Trabajos y tareas fuera del aula	✓
Participación en clase	✓
Asistencia	✓
Exposición de seminarios por los alumnos	√

PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA					
LICENCIATURA	POSGRADO	ÁREA INDISPENSABLE	ÁREA DESEABLE		
Ingeniería Mecánica	Maestría en	Distribución	Centro de		
Eléctrica o, Ingeniería	Ingeniería		Operación		
Eléctrica.	Eléctrica				

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA

PROGRAMA DE LA ASIGNATURA DE:					
	Siste	emas de Dist	ribuc	ción	
IDEN	ITIFICA	CIÓN DE LA	A AS	IGNATURA	
MODALIDAD: Curso	CL	LAVE: 1930			
TIPO DE ASIGNATURA: 1	Γeórico -	Práctica			
SEMESTRE EN QUE SE I	MPART	E: Noveno			
CARÁCTER DE LA ASIGN	NATUR/	A: Obligatori	a de	Elección	
NÚMERO DE CRÉDITOS:	8				
HORAS DE CLASE A LA 5 Teóricas: 3 Prácticas: 2 Semanas de clase: 16 HORAS:					
SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna					
SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna					

OBJETIVO GENERAL

Al finalizar el curso, el alumno será capaz de diseñar redes de distribución aérea y subterránea aplicando todos los elementos que lo conforman.

ÍNDICE TEMÁTICO					
UNIDAD	TEMAS	Horas Teóricas	Horas Prácticas		
1	Principios de los sistemas de distribución	4	0		
2	Características de la carga	4	2		
3	Alimentadores y cables aislados	6	4		
4	Análisis de los sistemas de distribución	8	4		
5	Transformadores de distribución	6	6		
6	Técnicas de compensación de potencia reactiva	6	6		
7	Protección contra sobrecorrientes	8	6		
8	Protección contra sobretensiones	6	4		
	Total de Horas	48	32		
	Suma Total de las Horas	8	30		

CONTENIDO TEMÁTICO

1. PRINCIPIOS DE LOS SISTEMAS DE DISTRIBUCIÓN

- 1.1. Características de los sistemas de distribución.
- 1.2. Clasificación de los sistemas de distribución. Media y baja tensión.
- 1.3. Elementos que se encuentran en los sistemas de distribución.
- 1.4. Líneas primarias y secundarias.
- 1.5. Transformador de distribución.
- 1.6. Acometidas.
- 1.7. Montajes y estructuras principales.

2. CARACTERÍSTICAS DE LAS CARGAS

- 2.1. Generalidades.
- 2.2. Tipos de cargas eléctricas.
- 2.3. Demanda y demanda máxima.
- 2.4. Factor de demanda y factor de utilización.
- 2.5. Factor de diversidad, factor de coincidencia y diversidad de la carga.
- 2.6. Demanda coincidente.
- 2.7. Cálculo de las tasas de crecimiento de la carga.
- 2.8. Control de la carga.

3. ALIMENTADORES Y CABLES AISLADOS

- 3.1. Impedancia de secuencia de alimentadores.
- 3.2. Capacidad de conducción.
- 3.3. Alimentadores con carga concentrada.
- 3.4. Alimentadores con carga distribuida.
- 3.5. Conductores.
- 3.6. Aislamientos.
- 3.7. Pantallas.
- 3.8. Esfuerzos electrostáticos.
- 3.9. Cables aislados sometidos a cortocircuito.
- 3.10. Instalación de cables.

4. ANÁLISIS DE LOS SISTEMAS DE DISTRIBUCIÓN.

- 4.1. Análisis para determinar la caída de voltaje.
- 4.2. Cálculo de la impedancia.
- 4.3. Pérdida en los alimentadores.
- 4.4. Optimización de la sección y longitud de alimentadores.
- 4.5. Sobrecorrientes

5. TRANSFORMADORES DE DISTRIBUCIÓN.

- 5.1. Características de los transformadores de distribución.
- 5.2. Criterios para la selección del transformador.
- 5.3. Instalación del transformador.
- 5.4. Ferroresonancia.
- 5.5. Protección contra sobrevoltajes.

- 5.6. Protección contra sobrecorrientes.
- 5.7. Análisis económico.

6. TÉCNICAS DE COMPENSACIÓN DE POTENCIA REACTIVA.

- 6.1. Clasificación y diseño de bancos de capacitores.
- 6.2. Alimentadores con carga uniformemente distribuidos.
- 6.3. Alimentadores con cargas distribuidas al azar.
- 6.4. Alimentadores con dos o más bancos de capacitares.
- 6.5. Control y protección de capacitores.
- 6.6. Instalación de capacitores en plantas industriales.

7. PROTECCIÓN CONTRA SOBRETENSIONES

- 7.1. Clasificación de las sobretensiones en los sistemas de distribución.
- 7.2. Características de las descargas atmosféricas.
- 7.3. Hilo de guarda, pararrayo, apartarrayo.
- 7.4. Protección por hilo de guarda.
- 7.5. Protección de transformadores.
- 7.6. Protección de equipo eléctrico.
- 7.7. Coordinación de aislamiento.

8. PROTECCIÓN CONTRA SOBRECORRIENTES

- 8.1. Protección con relevadores.
- 8.2. Protección con fusibles.
- 8.3. Protección con restauradores.
- 8.4. Protección con seccionadores.
- 8.5. Interruptores de transferencia de mediana y baja tensión.
- 8.6. Coordinación de protecciones.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- H. Lee Willis and Walter G. Scott, *Distribuited power generation*, CRC spress, 2000.
- Antonio Gómez Expósito, Electric Energy System, CRC spress, 2009.
- Enríquez Harper Gilberto, Sistema de transmisión y distribución de potencia eléctrica, LIMUSA, 2007.
- Enríquez Harper Gilberto, *Protección de instalaciones eléctricas industriales y comerciales*, Limusa segunda edición 2006.
- Conejo Antonio, Instalaciones eléctricas, , 1ª edición, Mc. Graw Hill, 2007.
- Manual de diseño de subestaciones, luz y fuerza del centro, 2003

BIBLIOGRAFÍA COMPLEMENTARIA

- Guillermo García, Análisis físico- Matemáticas de redes Eléctricas, NORIEGA, 2005.
- Guirado Torres, Tecnología eléctrica, Mc Graw Hill., 2006.
- Enríquez Harper Gilberto, Fundamento de instalaciones eléctricas de mediana y alta tensión, 2ª edición, 2000.
- Control and automotion of electrical power distribution system, 2^a edition, CRC spress, 2007.

SITIOS WEB RECOMENDADOS

- http://www.dgbiblio.unam.mx (librunam, tesiunam, bases de datos digitales)
- http://www.copernic.com
- http://www.ieee.org.mx/IEEE Seccion Mexico.html

SUGERENCIAS DIDACTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDACTICAS	UTILIZACIÓN EN EL CURSO
Exposición oral	$\sqrt{}$
Exposición audiovisual	$\sqrt{}$
Ejercicios dentro de clase	
Ejercicios fuera del aula	
Lecturas obligatorias	
Trabajo de investigación	
Practicas de taller	
Practicas de campo	
Otras	

MECANISMOS DE EVALUACIÓN

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	UTILIZACIÓN EN EL CURSO
Exámenes parciales	V
Examen final	V
Trabajos y tareas fuera del aula	$\sqrt{}$
Participación en clase	$\sqrt{}$
Asistencia	V
Exposición de seminarios por los alumnos	$\sqrt{}$

PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA					
LICENCIATURA	POSGRADO	ÁREA INDISPENSABLE	ÁREA DESEABLE		
Ingeniería Mecánica Eléctrica o, Ingeniería Eléctrica	Maestría en Ingeniería eléctrica	Eléctrica	Eléctrica		

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA MECÁNICA ELÉCTRICA

PROGRAMA DE LA ASIGNATURA DE:				
	Subestaciones Eléctri	cas		
IDENTIF	ICACIÓN DE LA ASI	GNATURA		
MODALIDAD: Curso	CLAVE: 1931			
TIPO DE ASIGNATURA: Teór	ica			
SEMESTRE EN QUE SE IMPA	ARTE: Noveno			
CARÁCTER DE LA ASIGNAT	URA: Obligatoria de l	Elección		
NÚMERO DE CRÉDITOS: 8				
HORAS DE CLASE A LA 4 Teóricas: 4 Prácticas: 0 Semanas de clase: 16 HORAS:				
SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna				
SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna				

OBJETIVO GENERAL

Al finalizar el curso el alumno tendrá los conocimientos que se requieren para la transmisión y distribución de la energía eléctrica que la integran.

ÍNDICE TEMÁTICO					
UNIDAD			Horas Prácticas		
1	Características de la Subestación Eléctrica	5	0		
2	Arreglos	10	0		
3	Equipo Principal	10	0		
4	Barras Colectoras	8	0		
5	Redes de Tierra	9	0		
6	Sistemas Auxiliares	7	0		
7	Subestaciones Especiales	6	0		
8	Pruebas y Puesta en Servicio	9	0		
	Total de Horas	64	0		
	Suma Total de las Horas	6	64		

CONTENIDO TEMÁTICO

1 CARACTERÍSTICAS DE LA SUBESTACIÓN ELÉCTRICA

- 1.1. Conceptos generales.
- 1.2. Clasificación de las subestaciones eléctricas.
- 1.3. Diagramas de conexiones.
- 1.4. Capacidad de transformación en subestaciones de distribución.
 - 1.4.1. Diagrama de conexiones.
- 1.5. Capacidad de transformación en subestaciones de subtransmisión.
 - 1.5.1. Diagrama de conexiones.
- 1.6. Capacidad de transformación en subestaciones de transmisión.
 - 1.6.1. Diagrama de conexiones.
- 1.7. Subestaciones eléctricas industriales, carga instalada, diagrama de conexiones.
- 1.8. subestaciones encapsuladas en Sexafloruro de Azufre (SF₆).

2 ARREGLOS

- 2.1. Continuidad de servicio, flexibilidad de operación, condiciones para el mantenimiento del equipo.
- 2.2. Superficie requerida.
- 2.3. Arreglos comunes (barra sencilla, doble barra con interruptor comodín, doble barra con interruptor de amarre, interruptor y medio, anillo, etc.).
- 2.4. Aplicación en las subestaciones de transmisión, subtransmisión y distribución.
- 2.5. Nomenclatura.

3 EQUIPO PRINCIPAL

- 3.1. Nivel de aislamiento.
- 3.2. Coordinación de aislamiento.
- 3.3. Descargas parciales.
- 3.4. Transformador de potencia.
- 3.5. Transformadores de instrumento.
- 3.6. Banco de capacitores.
- 3.7. Interruptores.
- 3.8. Apartarrayos.
- 3.9. Cuchillas desconectadoras.
- 3.10. Componentes y auxiliares.

4 BARRAS COLECTORAS

- 4.1. Tipos de barras.
- 4.2. Materiales y accesorios.
- 4.3. Aisladores.
- 4.4. Distancia entre partes vivas.
- 4.5. Barras aisladas en gas Sexafloruro de Azufre (SF₆).

5 REDES DE TIERRA

- 5.1. Necesidad de la red.
- 5.2. Elementos de la red.
- 5.3. Límites de corriente.
- 5.4. Factores de diseño.

6 SISTEMAS AUXILIARES

- 6.1. Alumbrado.
- 6.2. Sistema contra incendio.
- 6.3. Aire acondicionado.

7 SUBESTACIONES ESPECIALES

- 7.1. Subestaciones rectificadoras.
- 7.2. Subestaciones inversoras.

8 PRUEBAS Y PUESTA EN SERVICIO

- 8.1. Tipos de pruebas.
- 8.2. Pruebas en circuitos de control, protección y medición.
- 8.3. Faseo.
- 8.4. Puesta en servicio.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- Martín, José Raúl, Diseño de subestaciones eléctricas, Editorial División de Ingeniería de la UNAM. 2000.
- Abraham I. Pressman; Switching power suplí design, 3^a ed; Mc. Graw Hill; 2009.
- Luz y Fuerza del Centro, Manual de diseño de subestaciones, Editorial Luz y Fuerza del Centro, 2003.
- Enríquez Harper, Gilberto, *Elementos de diseño de subestaciones eléctricas*, Editorial LIMUSA, 2005.
- Viqueira Landa Jacinto; Redes eléctricas III; Facultad de Ingeniería UNAM; 2004.

BIBLIOGRAFÍA COMPLEMENTARIA

- Enríquez Harper, Gilberto, *Fundamentos de protección de sistemas eléctricos por relevadores*, 2ª Ed., Editorial Noriega, 2005.
- Guirardo Torres, Rafael, Asensi Orosa, Rafael, Tecnología eléctrica, 1ª Ed., Editorial Mc Graw Hill, 2006.

SITIOS WEB RECOMENDADOS

- http://www.dgbiblio.unam.mx (librunam, tesiunam, bases de datos digitales)
- http://www.copernic.com
- http://www.ieee.org.mx/IEEE Seccion Mexico.html

SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDÁCTICAS	UTILIZACIÓN EN EL CURSO
Exposición oral	✓
Exposición audiovisual	✓
Ejercicios dentro de clase	✓
Ejercicios fuera del aula	✓
Lecturas obligatorias	✓
Trabajo de investigación	✓
Prácticas de taller	
Prácticas de campo	
Otras	

MECANISMOS DE EVALUACIÓN

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	UTILIZACIÓN EN EL CURSO
Exámenes parciales	✓
Examen final	✓
Trabajos y tareas fuera del aula	✓
Participación en clase	✓
Asistencia	✓
Exposición de seminarios por los alumnos	✓

PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA				
LICENCIATURA	POSGRADO	ÁREA INDISPENSABLE	ÁREA DESEABLE	
Ingeniería Mecánica Eléctrica o, Ingeniería Eléctrica.	Maestría en Ingeniería Eléctrica	Sistemas Eléctricos de Potencia	Subestaciones	